期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Adaptive fractional integral terminal sliding mode power control of UPFC in DFIG wind farm penetrated multimachine power system 被引量:6
1
作者 P.K.Dash R.K.Patnaik S.P.Mishra 《Protection and Control of Modern Power Systems》 2018年第1期79-92,共14页
With an aim to improve the transient stability of a DFIG wind farm penetrated multimachine power system(MPN),an adaptive fractional integral terminal sliding mode power control(AFITSMPC)strategy has been proposed for ... With an aim to improve the transient stability of a DFIG wind farm penetrated multimachine power system(MPN),an adaptive fractional integral terminal sliding mode power control(AFITSMPC)strategy has been proposed for the unified power flow controller(UPFC),which is compensating the MPN.The proposed AFITSMPC controls the dq-axis series injected voltage,which controls the admittance model(AM)of the UPFC.As a result the power output of the DFIG stabilizes which helps in maintaining the equilibrium between the electrical and mechanical power of the nearby generators.Subsequently the rotor angular deviation of the respective generators gets recovered,which significantly stabilizes the MPN.The proposed AFITSMPC for the admittance model of the UPFC has been validated in a DFIG wind farm penetrated 2 area 4 machine power system in the MATLAB environment.The robustness and efficacy of the proposed control strategy of the UPFC,in contrast to the conventional PI control is vindicated under a number of intrinsic operating conditions,and the results analyzed are satisfactory. 展开更多
关键词 adaptive fractional integral terminal sliding mode power control Doubly fed induction generator Multimachine power network Unified power flow controller
原文传递
A novel MPTC sensorless control strategy for ANFTSMC with ESO to control PMSM
2
作者 ZHANG Bin WU Xiaoliang +2 位作者 YANG Jianfeng YANG Ping SUN Xuewei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期449-462,共14页
Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control... Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm. 展开更多
关键词 permanent magnet synchronous motors(PMSM) adaptive fast non-singular terminal sliding mode control(ANFTSMC) extended state observer(ESO) model predictive torque control(MPTC)
下载PDF
Obstacle-circumventing adaptive control of a four-wheeled mobile robot subjected to motion uncertainties
3
作者 Yiming YAN Shuting WANG +3 位作者 Yuanlong XIE Hao WU Shiqi ZHENG Hu LI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第3期123-143,共21页
To achieve the collision-free trajectory tracking of the four-wheeled mobile robot(FMR),existing methods resolve the tracking control and obstacle avoidance separately.Guaranteeing the synergistic robustness and smoot... To achieve the collision-free trajectory tracking of the four-wheeled mobile robot(FMR),existing methods resolve the tracking control and obstacle avoidance separately.Guaranteeing the synergistic robustness and smooth navigation of mobile robots subjected to motion uncertainties in a dynamic environment using this non-cooperative processing method is difficult.To address this challenge,this paper proposes an obstacle-circumventing adaptive control(OCAC)framework.Specifically,a novel anti-disturbance terminal slide mode control with adaptive gains is formulated,incorporating specified control laws for different stages.This formulation guarantees rapid convergence and simultaneous chattering elimination.By introducing sub-target points,a new sub-target dynamic tracking regression obstacle avoidance strategy is presented to transfer the obstacle avoidance problem into a dynamic tracking one,thereby reducing the burden of local path searching while ensuring system stability during obstacle circumvention.Comparative experiments demonstrate that the proposed OCAC method can strengthen the convergence and obstacle avoidance efficiency of the concerned FMR system. 展开更多
关键词 four-wheeled mobile robot obstacle-circumventing adaptive control adaptive anti-disturbance terminal sliding mode control sub-target dynamic tracking regression obstacle avoidance
原文传递
Accelerated Landweber iteration based control allocation for fault tolerant control of reusable launch vehicle 被引量:9
4
作者 Changzhu WEI Mingze WANG +1 位作者 Baogang LU Jialun PU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期175-184,共10页
This paper presents a novel Fault Tolerant Control(FTC)scheme based on accelerated Landweber iteration and redistribution mechanism for a horizontal takeoff horizontal landing reusable launch vehicle(RLV).First,an ada... This paper presents a novel Fault Tolerant Control(FTC)scheme based on accelerated Landweber iteration and redistribution mechanism for a horizontal takeoff horizontal landing reusable launch vehicle(RLV).First,an adaptive law based on fixed-time non-singular fast terminal sliding mode control(NFTSMC),which focuses on the attitude tracking controller design for RLV in the presence of model couplings,parameter uncertainties and external disturbances,is proposed to produce virtual control command.On this basis,a novel Control Allocation(CA)based on accelerated Landwber iteration is presented to realize proportional allocation of virtual control command among the actuators according to the effective gain as well as the distance from the current position of actuator to corresponding saturation limit.Meanwhile a novel redistribution mechanism is introduced to redistribute oversaturated command among healthy actuators(non-faulty or redundant).The proposed method can be applied to a real-time FTC system so that the controller reconfiguring is not required in case of actuator faults.Finally,the effectiveness of the proposed method is demonstrated by numerical simulations. 展开更多
关键词 Accelerate Landweber iteration adaptive non-singular fast terminal sliding mode control control allocation Fault tolerant control Redistribution mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部