In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
Conductive polymer composites(CPCs) as the thermo-sensitive materials have attracted much attention in thermal control field due to their reliable self-regulating behaviors, high efficiency and mechanical flexibility....Conductive polymer composites(CPCs) as the thermo-sensitive materials have attracted much attention in thermal control field due to their reliable self-regulating behaviors, high efficiency and mechanical flexibility. However, the development of these materials needs to manage the normal conflicting requirements, such as effective heating performance and good self-regulating capability. This paper presents a series of novel CPCs material having different amounts of hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB). The positive temperature coefficient intensity is enhanced to 105.2, and the roomtemperature resistivity is optimized to 320 ? cm. Besides, the Curie temperatures are regulated to room-temperature range by incorporating the low-melting-point blend matrix into the poly(ethylene-co-vinyl acetate)/CNTs/CB composite. The thermalcontrol experiment demonstrates that CPCs-heating elements can adjust the equilibrium temperature of controlled equipment near their Curie temperatures without any control methods. Compared with the ordinary resistor, the CPCs materials have the remarkable adaptive thermal control behavior. Furthermore, the temperature control capability is particularly prominent in the changing environment temperature. The CPCs as a safe and reliable adaptive heating element is potential to replace the conventional active thermal control means.展开更多
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
基金supported by the National Natural Science Foundation of China (Grant No. 51225602)。
文摘Conductive polymer composites(CPCs) as the thermo-sensitive materials have attracted much attention in thermal control field due to their reliable self-regulating behaviors, high efficiency and mechanical flexibility. However, the development of these materials needs to manage the normal conflicting requirements, such as effective heating performance and good self-regulating capability. This paper presents a series of novel CPCs material having different amounts of hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB). The positive temperature coefficient intensity is enhanced to 105.2, and the roomtemperature resistivity is optimized to 320 ? cm. Besides, the Curie temperatures are regulated to room-temperature range by incorporating the low-melting-point blend matrix into the poly(ethylene-co-vinyl acetate)/CNTs/CB composite. The thermalcontrol experiment demonstrates that CPCs-heating elements can adjust the equilibrium temperature of controlled equipment near their Curie temperatures without any control methods. Compared with the ordinary resistor, the CPCs materials have the remarkable adaptive thermal control behavior. Furthermore, the temperature control capability is particularly prominent in the changing environment temperature. The CPCs as a safe and reliable adaptive heating element is potential to replace the conventional active thermal control means.