This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo...This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.展开更多
The trajectory of a shipbome radar target has a certain complexity, randomness, and diversity. Tracking a strong maneuvering target timely, accurately, and effectively is a key technology for a shipbome radar tracking...The trajectory of a shipbome radar target has a certain complexity, randomness, and diversity. Tracking a strong maneuvering target timely, accurately, and effectively is a key technology for a shipbome radar tracking system. Combining a variable structure interacting multiple model with an adaptive grid algorithm, we present a variable structure adaptive grid inter- acting multiple model maneuvering target tracking method. Tracking experiments are performed using the proposed method for five maneuvering targets, including a uniform motion - uniform acceleration motion target, a uniform acceleration motion - uni- form motion target, a serpentine locomotion target, and two variable acceleration motion targets. Experimental results show that the target position, velocity, and acceleration tracking errors for the five typical target trajectories are small. The method has high tracking precision, good stability, and flexible adaptability.展开更多
基金Foundation item: Supported by the National Nature Science Foundation of China (No. 61074053, 61374114) and the Applied Basic Research Program of Ministry of Transport of China (No. 2011-329-225 -390).
文摘This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.
基金Project (No. 61105020) supported by the National Natural Science Foundation of China
文摘The trajectory of a shipbome radar target has a certain complexity, randomness, and diversity. Tracking a strong maneuvering target timely, accurately, and effectively is a key technology for a shipbome radar tracking system. Combining a variable structure interacting multiple model with an adaptive grid algorithm, we present a variable structure adaptive grid inter- acting multiple model maneuvering target tracking method. Tracking experiments are performed using the proposed method for five maneuvering targets, including a uniform motion - uniform acceleration motion target, a uniform acceleration motion - uni- form motion target, a serpentine locomotion target, and two variable acceleration motion targets. Experimental results show that the target position, velocity, and acceleration tracking errors for the five typical target trajectories are small. The method has high tracking precision, good stability, and flexible adaptability.