期刊文献+
共找到2,324篇文章
< 1 2 117 >
每页显示 20 50 100
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
1
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 weighted Gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
下载PDF
基于知识与AW-ESN融合的烧结过程FeO含量预测
2
作者 方怡静 蒋朝辉 +2 位作者 黄良 桂卫华 潘冬 《自动化学报》 EI CAS CSCD 北大核心 2024年第2期282-294,共13页
氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一... 氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法.首先,针对烧结过程热状态参数缺失的问题,建立烧结料层最高温度分布模型,实现基于料层温度分布特征的FeO含量等级划分;其次,针对烧结过程参数波动频繁的问题,提出基于核函数高维映射的多尺度数据配准方法,有效抑制离群点的影响,提升建模数据的质量;最后,针对烧结过程数据驱动模型缺乏机理认知致使模型预测精度不高的问题,将过程数据中提取得到的FeO含量等级知识与AW-ESN (Adaptive weight echo state network)结合,建立DK-AWESN模型,有效提升复杂工况下FeO含量的预测精度.现场工业数据试验表明,所提方法能实时准确地预测烧结过程FeO含量,为烧结过程的智能化调控提供实时有效的FeO含量反馈信息. 展开更多
关键词 FeO含量预测 烧结过程 数据知识 变权重回声状态网络 信息融合
下载PDF
LKAW: A Robust Watermarking Method Based on Large Kernel Convolution and Adaptive Weight Assignment
3
作者 Xiaorui Zhang Rui Jiang +3 位作者 Wei Sun Aiguo Song Xindong Wei Ruohan Meng 《Computers, Materials & Continua》 SCIE EI 2023年第4期1-17,共17页
Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learnin... Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise. 展开更多
关键词 Robust watermarking large kernel convolution adaptive loss weights high-frequency wavelet loss deep learning
下载PDF
Projection-Based Dimensional Reduction of Adaptively Refined Nonlinear Models
4
作者 Clayton Little Charbel Farhat 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1779-1800,共22页
Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computatio... Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computational models such as projection-based reduced-order models. This paper presents a complete framework for projection-based model order reduction (PMOR) of nonlinear problems in the presence of AMR that builds on elements from existing methods and augments them with critical new contributions. In particular, it proposes an analytical algorithm for computing a pseudo-meshless inner product between adapted solution snapshots for the purpose of clustering and PMOR. It exploits hyperreduction—specifically, the energy-conserving sampling and weighting hyperreduction method—to deliver for nonlinear and/or parametric problems the desired computational gains. Most importantly, the proposed framework for PMOR in the presence of AMR capitalizes on the concept of state-local reduced-order bases to make the most of the notion of a supermesh, while achieving computational tractability. Its features are illustrated with CFD applications grounded in AMR and its significance is demonstrated by the reported wall-clock speedup factors. 展开更多
关键词 adaptive mesh refinement(AMR) Computational fluid dynamics Energy-conserving sampling and weighting(ECSW) Model order reduction Reduced-order model Supermesh
下载PDF
Importance-Weighted Transfer Learning for Fault Classification under Covariate Shift
5
作者 Yi Pan Lei Xie Hongye Su 《Intelligent Automation & Soft Computing》 2024年第4期683-696,共14页
In the process of fault detection and classification,the operation mode usually drifts over time,which brings great challenges to the algorithms.Because traditional machine learning based fault classification cannot d... In the process of fault detection and classification,the operation mode usually drifts over time,which brings great challenges to the algorithms.Because traditional machine learning based fault classification cannot dynamically update the trained model according to the probability distribution of the testing dataset,the accuracy of these traditional methods usually drops significantly in the case of covariate shift.In this paper,an importance-weighted transfer learning method is proposed for fault classification in the nonlinear multi-mode industrial process.It effectively alters the drift between the training and testing dataset.Firstly,the mutual information method is utilized to perform feature selection on the original data,and a number of characteristic parameters associated with fault classification are selected according to their mutual information.Then,the importance-weighted least-squares probabilistic classifier(IWLSPC)is utilized for binary fault detection and multi-fault classification in covariate shift.Finally,the Tennessee Eastman(TE)benchmark is carried out to confirm the effectiveness of the proposed method.The experimental result shows that the covariate shift adaptation based on importance-weight sampling is superior to the traditional machine learning fault classification algorithms.Moreover,IWLSPC can not only be used for binary fault classification,but also can be applied to the multi-classification target in the process of fault diagnosis. 展开更多
关键词 Covariate shift adaption nonlinear multi-mode process importance weight sampling multi-fault classification
下载PDF
基于AWAHP的调度员疲劳致因研究
6
作者 陈亮 郑伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期42-49,共8页
为进一步保障铁路运营安全,调研分析铁路列车调度员疲劳因素,首先,针对铁路调度员工作内容的特点,在查阅相关文献、咨询调度专家、人因工程专家的基础上,建立列车调度员疲劳致因评价指标体系,该指标体系包括工作内容、轮岗安排、人员素... 为进一步保障铁路运营安全,调研分析铁路列车调度员疲劳因素,首先,针对铁路调度员工作内容的特点,在查阅相关文献、咨询调度专家、人因工程专家的基础上,建立列车调度员疲劳致因评价指标体系,该指标体系包括工作内容、轮岗安排、人员素质、外界因素4个一级指标和18个二级指标;其次,采用自适应加权的层次分析法(AWAHP)计算不同专家自身评价的权重,并求得最终指标的加权权重;最后,以某铁路局调度中心为例,运用AWAHP综合评价调度员疲劳致因指标的权重。结果表明:应急突发处置、作业时间段、持续作业时间、线路繁忙程度、工作复杂程度是影响调度员疲劳的显著因素,有效识别铁路列车调度员疲劳的关键因素,并针对关键因素进行分析与对策建议。 展开更多
关键词 自适应加权层次分析法(awAHP) 铁路列车调度员 疲劳致因 评价指标体系 综合评价
下载PDF
基于AWMMD的柴油机气缸故障特征提取方法研究 被引量:2
7
作者 王珉 秦国军 廖亦凡 《振动与冲击》 EI CSCD 北大核心 2023年第7期333-340,共8页
针对柴油机气缸故障诊断时的噪声干扰问题,提出一种自适应加权多尺度形态分解(adaptive weighted multi-scale morphological decomposing, AWMMD)方法,从各个缸盖表面振动信号中提取故障特征。基于三种组合算子构造一种新的组合差值形... 针对柴油机气缸故障诊断时的噪声干扰问题,提出一种自适应加权多尺度形态分解(adaptive weighted multi-scale morphological decomposing, AWMMD)方法,从各个缸盖表面振动信号中提取故障特征。基于三种组合算子构造一种新的组合差值形态滤波器,用于对振动信号进行多尺度分解;以Teager能量峭度作为评判指标,设计基于遗传算法的各尺度形态模式分量(morphological mode component, MMC)权值自适应分配算法,提出加权多尺度形态分解方法;将自适应权值与多尺度分解的形态模式分量进行绑定,得到优化的故障特征提取结果。仿真信号测试与柴油机故障模拟信号分析结果表明,该方法能有效抑制噪声干扰并提取故障特征。 展开更多
关键词 柴油机气缸 振动信号 特征提取 多尺度形态分解(MMD) 自适应加权(aw)
下载PDF
Research on Data Fusion of Adaptive Weighted Multi-Source Sensor 被引量:3
8
作者 Donghui Li Cong Shen +5 位作者 Xiaopeng Dai Xinghui Zhu Jian Luo Xueting Li Haiwen Chen Zhiyao Liang 《Computers, Materials & Continua》 SCIE EI 2019年第9期1217-1231,共15页
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu... Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality. 展开更多
关键词 adaptive weighting multi-source sensor data fusion loss of data processing grubbs elimination
下载PDF
Application of Weighted Multiple Models Adaptive Controller in the Plate Cooling Process 被引量:10
9
作者 DONG Zhi-Kun WANG Xin +2 位作者 WANG Xiao-Bo LI Shao-Yuan ZHENG Yi-Hui 《自动化学报》 EI CSCD 北大核心 2010年第8期1144-1150,共7页
关键词 冷却过程 控制方法 自动化系统 误差计算
下载PDF
基于CAWOA-BP的船舶凝给水系统故障诊断 被引量:2
10
作者 肖林博 陈辉 管聪 《舰船科学技术》 北大核心 2023年第6期118-124,共7页
为克服传统专家经验在故障诊断方面的不足,实现船舶凝给水系统的智能诊断,在标准BP神经网络基础上提出一种优化后的CAWOA-BP故障诊断模型。采用混沌映射以及自适应权重调整策略优化WOA鲸鱼算法,利用优化后的WOA鲸鱼算法改进BP神经网络... 为克服传统专家经验在故障诊断方面的不足,实现船舶凝给水系统的智能诊断,在标准BP神经网络基础上提出一种优化后的CAWOA-BP故障诊断模型。采用混沌映射以及自适应权重调整策略优化WOA鲸鱼算法,利用优化后的WOA鲸鱼算法改进BP神经网络的权值及阈值矩阵。由于船舶凝给水系统的状态监测数据是复杂多维度数据,利用UMAP降维算法对原始数据进行降维。最后,利用降维处理后的数据训练CAWOA-BP神经网络模型,实现故障诊断。通过对正常及故障数据的学习,发现优化后的CAWOA-BP模型相比于标准BP,WOA-BP,PSO-BP故障诊断模型具有更高的准确率、精确率、召回率及预测误差。研究表明,基于优化后的CAWOA-BP神经网络故障诊断方法能够更加精确实现船舶凝给水系统的故障诊断。 展开更多
关键词 船舶凝给水系统 优化BP神经网络 WOA鲸鱼算法 混沌映射 自适应权重
下载PDF
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:1
11
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 Bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
下载PDF
Modified Adaptive Weighted Averaging Filtering Algorithm for Noisy Image Sequences
12
作者 李伟锋 郁道银 陈晓冬 《Transactions of Tianjin University》 EI CAS 2007年第2期103-106,共4页
In order to avoid the influence of noise variance on the filtering performances, a modified adaptive weighted averaging (MAWA) filtering algorithm is proposed for noisy image sequences. Based upon adaptive weighted av... In order to avoid the influence of noise variance on the filtering performances, a modified adaptive weighted averaging (MAWA) filtering algorithm is proposed for noisy image sequences. Based upon adaptive weighted averaging pixel values in consecutive frames, this algorithm achieves the filtering goal by assigning smaller weights to the pixels with inappropriate estimated motion trajectory for noise. It only utilizes the intensity of pixels to suppress noise and accordingly is independent of noise variance. To evaluate the performance of the proposed filtering algorithm, its mean square error and percentage of preserved edge points were compared with those of traditional adaptive weighted averaging and non-adaptive mean filtering algorithms under different noise variances. Relevant results show that the MAWA filtering algorithm can preserve image structures and edges under motion after attenuating noise, and thus may be used in image sequence filtering. 展开更多
关键词 adaptive weighted averaging image sequences motion trajectory noise variance
下载PDF
Dynamic spatiotemporal correlation coefficient based on adaptive weight
13
作者 Guoli Mo Chunzhi Tan +1 位作者 Weiguo Zhang Xuezeng Yu 《Financial Innovation》 2023年第1期424-466,共43页
Risk management is an important aspect of financial research because correlations among financial data are essential in evaluating portfolio risk.Among various correlations,spatiotemporal correlations involve economic... Risk management is an important aspect of financial research because correlations among financial data are essential in evaluating portfolio risk.Among various correlations,spatiotemporal correlations involve economic entity attributes and are interrelated in space and time.Such correlations have therefore drawn increasing attention in financial risk management.However,classical correlation measurements are typically based on either time series correlations or spatial dependence;they cannot be directly applied to financial data with spatiotemporal correlations.The spatiotemporal correlation coefficient model with adaptive weight proposed in this paper can(1)address the absolute quantity,dynamic quantity,and dynamic development of financial data and(2)be used for risk grading,financial risk evaluation,and portfolio management.To verify the validity and superiority of this model,cluster analysis results and portfolio performance are compared with a classical model with time series correlation or spatial correlation,respectively.Empirical findings show that the proposed coefficient is highly effective and convenient compared to others.Overall,our method provides a highly efficient financial risk management method with valuable implications for investors and financial institutions. 展开更多
关键词 Spatiotemporal correlation Absolute distance Growth distance Fluctuation distance adaptive weight
下载PDF
Unsupervised Functional Data Clustering Based on Adaptive Weights
14
作者 Yutong Gao Shuang Chen 《Open Journal of Statistics》 2023年第2期212-221,共10页
In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be direc... In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms. 展开更多
关键词 Functional Data Unsupervised Learning Clustering Functional Principal Component Analysis adaptive Weight
下载PDF
基于集合经验模态分解和多目标遗传算法的火-多储系统调频功率双层优化 被引量:4
15
作者 李翠萍 司文博 +2 位作者 李军徽 严干贵 贾晨 《电工技术学报》 EI CSCD 北大核心 2024年第7期2017-2032,共16页
针对分布于区域电网不同网络节点的多座储能电站参与电网调频功率调度问题,该文提出一种基于集合经验模态分解(EEMD)和多目标遗传算法(MOGA)的火-多储系统调频功率双层优化策略。该策略包含火-储调频功率优化层和多储能电站调频功率优化... 针对分布于区域电网不同网络节点的多座储能电站参与电网调频功率调度问题,该文提出一种基于集合经验模态分解(EEMD)和多目标遗传算法(MOGA)的火-多储系统调频功率双层优化策略。该策略包含火-储调频功率优化层和多储能电站调频功率优化层:上层计及火-储调配资源各自优势及剩余调频能力,构建火-储调频功率优化分配模型,完成火-储调频功率的分配;下层引入关于调频成本和荷电状态(SOC)的自适应权重系数,以调频成本最低和SOC均衡为优化目标,完成调频功率在多储能电站之间的分配。仿真结果表明,所提策略可以提升区域电网调频效果并降低调频成本,均衡控制多个储能电站的调频成本和SOC,可以防止经济性较好的储能电站长期处于SOC越限边缘状态,提升储能电站参与调频的积极性和可持续性。 展开更多
关键词 多火电储能系统 二次调频 双层优化控制 多目标遗传算法(MOGA) 自适 应权重系数
下载PDF
基于改进蝴蝶搜索算法的DGPS整周模糊度快速解算 被引量:1
16
作者 尚俊娜 罗照旺 《中国惯性技术学报》 EI CSCD 北大核心 2024年第2期139-145,共7页
为了快速准确地解算差分全球定位系统(DGPS)整周模糊度,提出了一种改进蝴蝶搜索算法(IBOA)求解整周模糊度。首先在蝴蝶优化算法(BOA)的香味系数中加入一个自适应权重,弥补BOA算法觅食行为中较弱的搜索能力;其次使用动态切换概率权衡BOA... 为了快速准确地解算差分全球定位系统(DGPS)整周模糊度,提出了一种改进蝴蝶搜索算法(IBOA)求解整周模糊度。首先在蝴蝶优化算法(BOA)的香味系数中加入一个自适应权重,弥补BOA算法觅食行为中较弱的搜索能力;其次使用动态切换概率权衡BOA算法中全局搜索与局部搜索的比例;最后在全局搜索和局部搜索阶段引入新的迭代位置更新策略,提升了算法全局搜索能力和跳出局部最优能力。与最小二乘模糊度降相关平差算法(LAMBDA)算法进行1000个历元数据的解算对比实验,结果表明所提算法的平均搜索成功率比LAMBDA算法提高了5.07%。 展开更多
关键词 差分全球定位系统 整周模糊度 改进蝴蝶搜索算法 自适应权重
下载PDF
基于一致性图的权重自适应多视角谱聚类算法
17
作者 王丽娟 邢津萍 +3 位作者 尹明 郝志峰 蔡瑞初 温雯 《计算机工程》 CAS CSCD 北大核心 2024年第2期122-131,共10页
随着移动设备和互联网的普及,多视角数据的采集和分享变得更加容易,其可以从多个视角更准确地描述数据。目前,一些多视角聚类算法忽略了不同视角间的一致性潜在知识和不同视角的重要性。针对该问题,提出一种平衡视角间一致性信息的多视... 随着移动设备和互联网的普及,多视角数据的采集和分享变得更加容易,其可以从多个视角更准确地描述数据。目前,一些多视角聚类算法忽略了不同视角间的一致性潜在知识和不同视角的重要性。针对该问题,提出一种平衡视角间一致性信息的多视角聚类算法。首先通过调节视角权重学习视角间一致的共享相似度矩阵,提升共享矩阵的一致性,其中相关性强的视角具有的一致性信息更多,视角权重越大,在一致性学习中发挥的作用越大,而差异性大的视角其权重越小,在学习中发挥的作用越小。其次学习视角间的一致性样本嵌入以及不同视角的特征嵌入,并将特征嵌入中包含的多样性特征信息迁移到样本嵌入中,以此促进样本嵌入的一致性表达。在不同视角特征中包含多样性信息,可补充上述共享相似度矩阵学习中单一样本关系的不足。因此,采用二部图协同聚类,通过建立样本数据、样本嵌入和特征嵌入的关系图,学习样本的特征嵌入,并将其迁移到样本嵌入中。最后将图学习、谱聚类和特征嵌入学习整合到统一的框架中进行联合优化,得到最优的样本嵌入。实验结果表明,通过对样本嵌入进行K-means聚类,将该算法运行于5个真实数据集并与7种聚类算法对比,其中在3-Sources、Yale、MRSCV1数据集上的正确率均高于对比算法5%以上,验证了该算法的有效性。 展开更多
关键词 多视角聚类 一致性学习 权重自适应 协同聚类 谱聚类
下载PDF
ADASYN与类别逆比例加权法在阿尔茨海默病不平衡数据中的应用
18
作者 杨慧 易付良 +7 位作者 陈杜荣 秦瑶 韩红娟 崔靖 白文琳 马艺菲 张荣 余红梅 《中国卫生统计》 CSCD 北大核心 2024年第2期175-180,共6页
目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(... 目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(Alzheimer′s disease neuroimaging initiative,ADNI),经随机森林填补缺失值,弹性网络筛选特征子集后,利用ADASYN与类别逆比例加权法处理类别不平衡数据。分别结合随机森林(random forest,RF)、支持向量机(support vector machine,SVM)构建四种模型:ADASYN-RF、ADASYN-SVM、加权随机森林(weighted random forest,WRF)、加权支持向量机(weighted support vector machine,WSVM),与RF、SVM比较分类性能。模型评价指标为宏观平均精确率(macro-average of precision,macro-P)、宏观平均召回率(macro-average of recall,macro-R)、宏观平均F1值(macro-average of F1-score,macro-F1)、准确率(accuracy,ACC)、Kappa值和AUC(area under the ROC curve)。结果ADASYN-RF的分类性能最优(Kappa值为0.938,AUC为0.980),ADASYN-SVM次之。利用ADASYN-RF预测得到的重要分类特征分别为CDRSB、LDELTOTAL、MMSE,在临床上均可得到证实。结论ADASYN与类别逆比例加权法都能辅助提升分类器性能,但ADASYN算法更优。 展开更多
关键词 类别不平衡 ADASYN 加权法 阿尔茨海默病 分类
下载PDF
小脑模型关节机器人自适应近似最优鲁棒控制
19
作者 刘芬 张超勇 《机械设计与制造》 北大核心 2024年第7期77-83,共7页
为了提升控制性能,降低训练时间与稳态误差,提出了一种小脑模型关节机器人自适应近似最优鲁棒控制方法。首先找到克服诸如重力等非线性的最佳权重集,控制函数保持不变,从而消除存在偏差项时的稳态误差。然后寻找实现原点近似最优控制的... 为了提升控制性能,降低训练时间与稳态误差,提出了一种小脑模型关节机器人自适应近似最优鲁棒控制方法。首先找到克服诸如重力等非线性的最佳权重集,控制函数保持不变,从而消除存在偏差项时的稳态误差。然后寻找实现原点近似最优控制的附加权重集,从而在搜索优化时惩罚控制作用不会导致由于重力引起的任何稳态误差。无功权值和无功权值之和提供了一个鲁棒权值更新的监督终端,Lyapunov方法保证了信号的一致最终有界性,保证了权值漂移和突发不发生。最后通过柔性关节机器人的实验验证了提出方法的有效性。 展开更多
关键词 机器人 鲁棒控制 最佳权重集 自适应
下载PDF
基于多策略麻雀搜索算法的机器人路径规划 被引量:1
20
作者 杨红 杨超 《沈阳大学学报(自然科学版)》 CAS 2024年第2期141-152,共12页
通过多种策略对基本麻雀搜索算法(SSA)进行改进,以解决麻雀搜索算法后期由于种群多样性丢失而导致的全局优化精度和速度问题。首先,改进无限折叠迭代映射(ICMIC)初始化种群,将自适应分段步长因子引入麻雀探测器的位置更新公式中,使麻雀... 通过多种策略对基本麻雀搜索算法(SSA)进行改进,以解决麻雀搜索算法后期由于种群多样性丢失而导致的全局优化精度和速度问题。首先,改进无限折叠迭代映射(ICMIC)初始化种群,将自适应分段步长因子引入麻雀探测器的位置更新公式中,使麻雀搜索算法观察者的固定比例系数随迭代次数动态变化。然后,将观察者的位置与新公式和正弦余弦算法(SCA)相结合,并干扰先前的观察者步长。最后,在基准测试函数上比较了改进的麻雀搜索算法(ISSA)、麻雀搜索算法(SSA)、鲸鱼算法(WOA)、灰狼算法(GWO)、改进的灰狼算法(CGWO)、正弦余弦算法(SCA)和粒子群优化算法(PSO)的收敛性和准确性,并将其应用于路径规划。实验表明改进的麻雀搜索算法具有良好的优化性能。 展开更多
关键词 麻雀搜索算法 无限折叠迭代混沌映射 自适应惯性权重 正余弦算法 路径规划
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部