Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the inp...Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.展开更多
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly convergin...Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.展开更多
Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues ...The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM...Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.展开更多
Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined contro...Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.展开更多
This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t...This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.展开更多
An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideratio...An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.展开更多
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ...Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.展开更多
In order to improve the measurement precision of the optical current transducer ( OCT), the adaptive optical transducing principle on independent variables is presented in this paper. And one of the adaptive optical...In order to improve the measurement precision of the optical current transducer ( OCT), the adaptive optical transducing principle on independent variables is presented in this paper. And one of the adaptive optical current transducer(AOCT) on the independent variables of the output of the electricmegnet current transducer is introduced. According to IEC660044-8, the performance of AOCT was examined roundly applying the standard testing system authenticated by the state authority. The results indicate that the measurement precision of the AOCT has already reached 0. 2 class under the temperature from -40℃ to 60℃ ,which proves the feasibility of the method.展开更多
Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbi...Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbine(MCT)system,the nonlinear controllers which rely on precise mathematical models show poor performance under a high level of parameters’uncertainties.This paper proposes an adaptive single neural control(ASNC)strategy for variable step-size perturb and observe(P&O)maximum power point tracking(MPPT)control.Firstly,to automatically update the neuron weights of SNC for the nonlinear systems,an adaptive mechanism is proposed to adaptively adjust the weighting and learning coefficients.Secondly,aiming to generate the exact reference speed for ASNC to extract the maximum power,a variable step-size law based on speed increment is designed to strike a balance between tracking speed and accuracy of P&O MPPT.The robust stability of the MCT control system is guaranteed by the Lyapunov theorem.Comparative simulation results show that this strategy has favorable adaptive performance under variable velocity conditions,and the MCT system operates at maximum power point steadily.展开更多
This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines ...This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.展开更多
Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame w...Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame with circle, square and hexagon shape tolerance area using adaptive solutions is presented. The theoretical considerations are supported by simulation results.展开更多
A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representatio...A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representation and is proposed to extract weak harmonics from a noisy current signal, especially in the presence of additive interference caused by transient modulation waves. As an application, a rotor unbalance experiment of rotating machinery driven by an induction motor is carried out, The result shows that the eccentricity harmonic magnitude of a current signal obtained by the method represents the rotor unbalance conditions sensitively. Vibration analysis is used to validate the proposed method.展开更多
A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals wi...A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals with Gaussian distributions and current pulses up to 1000 counts/s, as well as an input current range of 1 n A–1 m A. When tested, the resolution was found to exceed 3.68% for full scale, the nonlinearity was found to be less than 0.11%, and the measurement sensibility was found to be less than 5 p A. We believe that the system will play a crucial role in improving the measurement accuracy of beam diagnosis and the efficiency of accelerator operation,as well as decreasing the time required for beam tuning.This system was applied to the beam diagnosis of an injector II prototype for an accelerator-driven subcritical system and produced excellent measurement results. A description of the adaptive fast readout system for wire scanners is presented in this paper.展开更多
In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical ...In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.展开更多
文摘Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.
基金supported by Natural Science Foundation Research Project of Shanxi Science and Technology Department(2016JM1032)
文摘Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
基金supported by Science and Technology Project of State Grid Corporation of China(52094020006U)National Natural Science Foundation of China(NSFC)(52061635105)China Postdoctoral Science Foundation(2021M692525).
文摘The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
基金supported in part by the National Natural Science Foundation of China under Grant 51977099。
文摘Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.
文摘Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.
基金This work was supported in part by the National Natural Science Foundation of China under 61374125。
文摘This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.
基金Project(114601034)supported by the Scholarship Award for Excellent Doctoral Students Granted by the Ministry of Education of ChinaProject(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-53)Initial Research Funds for Young Teachers of Donghua University,China(104070053029)Shanghai Rising-Star Program,China(No.19QA1400400)。
文摘Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.
文摘In order to improve the measurement precision of the optical current transducer ( OCT), the adaptive optical transducing principle on independent variables is presented in this paper. And one of the adaptive optical current transducer(AOCT) on the independent variables of the output of the electricmegnet current transducer is introduced. According to IEC660044-8, the performance of AOCT was examined roundly applying the standard testing system authenticated by the state authority. The results indicate that the measurement precision of the AOCT has already reached 0. 2 class under the temperature from -40℃ to 60℃ ,which proves the feasibility of the method.
基金financially supported by the National Natural Science Foundation of China(Grant No.61673260)。
文摘Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbine(MCT)system,the nonlinear controllers which rely on precise mathematical models show poor performance under a high level of parameters’uncertainties.This paper proposes an adaptive single neural control(ASNC)strategy for variable step-size perturb and observe(P&O)maximum power point tracking(MPPT)control.Firstly,to automatically update the neuron weights of SNC for the nonlinear systems,an adaptive mechanism is proposed to adaptively adjust the weighting and learning coefficients.Secondly,aiming to generate the exact reference speed for ASNC to extract the maximum power,a variable step-size law based on speed increment is designed to strike a balance between tracking speed and accuracy of P&O MPPT.The robust stability of the MCT control system is guaranteed by the Lyapunov theorem.Comparative simulation results show that this strategy has favorable adaptive performance under variable velocity conditions,and the MCT system operates at maximum power point steadily.
文摘This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.
文摘Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame with circle, square and hexagon shape tolerance area using adaptive solutions is presented. The theoretical considerations are supported by simulation results.
基金This paper is sponsored by National Natural Science Foundation of China under Grant No.50475087
文摘A method for estimating current harmonics of an induction motor is introduced which is used for sensorless monitoring of a mechanical system driven by the motor. The method is based on an adaptive signal representation and is proposed to extract weak harmonics from a noisy current signal, especially in the presence of additive interference caused by transient modulation waves. As an application, a rotor unbalance experiment of rotating machinery driven by an induction motor is carried out, The result shows that the eccentricity harmonic magnitude of a current signal obtained by the method represents the rotor unbalance conditions sensitively. Vibration analysis is used to validate the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.11475233,11705257,and 11775285)
文摘A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals with Gaussian distributions and current pulses up to 1000 counts/s, as well as an input current range of 1 n A–1 m A. When tested, the resolution was found to exceed 3.68% for full scale, the nonlinearity was found to be less than 0.11%, and the measurement sensibility was found to be less than 5 p A. We believe that the system will play a crucial role in improving the measurement accuracy of beam diagnosis and the efficiency of accelerator operation,as well as decreasing the time required for beam tuning.This system was applied to the beam diagnosis of an injector II prototype for an accelerator-driven subcritical system and produced excellent measurement results. A description of the adaptive fast readout system for wire scanners is presented in this paper.
文摘In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.