High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping str...High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping strategies.This paper analyzes the influences of a feed-forward voltage filter and feedback current filter for the inner controller for the high-frequency impedance characteristics of the MMC based on a model.Moreover,the mechanism,influencing factors,and limitations of the existing strategy including an additional lowpass filter in the voltage feed-forward stage are investigated.Secondly,a resonance suppression strategy for the inclusion of additional cascaded notch filters in the voltage feed-forward stage is proposed,and its parameter design method and applicable scenarios are analyzed.In addition,this paper analyzes the effects of the inclusion of an additional control in other stages for the inner controller of the MMC.Finally,the correctness of the theoretical analysis and the proposed strategy is verified based on the simulation of an actual project on PSCAD/EMTDC.展开更多
The vertical phase distribution of active layers plays a vital role in balancing exciton dissociation and cha rge transport for achieving efficient polymer solar cells(PSCs).The layer-by-layer(LbL)PSCs are commonly pr...The vertical phase distribution of active layers plays a vital role in balancing exciton dissociation and cha rge transport for achieving efficient polymer solar cells(PSCs).The layer-by-layer(LbL)PSCs are commonly prepared by using sequential spin-coating method from donor and acceptor solutions with distinct solvents and solvent additives.The enhanced exciton dissociation is expected in the LbL PSCs with efficient charge transport in the relatively neat donor or acceptor layers.In this work,a series of LbL all-polymer solar cells(APSCs)were fabricated with PM6 as donor and PY-DT as acceptor,and triplet material m-Ir(CPmPB)_(3)is deliberately incorporated into PY-DT layer to prolong exciton lifetimes of active layers.The power conversion efficiency(PCE)of LbL APSCs is improved to 18.24%from 17.32%by incorporating 0.3 wt%m-Ir(CPMPB)_(3)in PY-DT layer,benefiting from the simultaneously enhanced short-circuit current density(Isc)of 25.17 mA cm^(-2)and fill factor(FF)of 74.70%.The enhancement of PCE is attributed to the efficient energy transfer of m-Ir(CPmPB)_(3)to PM6 and PY-DT,resulting in the prolonged exciton lifetime in the active layer and the increased exciton diffusion distance.The efficient energy transfer from m-Ir(CPmPB)_(3)to PM6 and PY-DT layer can be confirmed by the increased photoluminescence(PL)intensity and the prolonged PL lifetime of PM6 and PY-DT in PM6+m-Ir(CPmPB)_(3)and PY-DT+m-Ir(CPmPB)_(3)films.This study indicates that the triplet material as solid additive has great potential in fabricating efficient LbL APSCs by prolonging exciton lifetimes in active layers.展开更多
基金supported in part by Science and Technology Project of State Grid Corporation of China,“Research on Harmonic Oscillation ProblemsSuppression Strategies of Flexible DC Connected to AC Grid”,(No.SGTYHT/17-JS-199).
文摘High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping strategies.This paper analyzes the influences of a feed-forward voltage filter and feedback current filter for the inner controller for the high-frequency impedance characteristics of the MMC based on a model.Moreover,the mechanism,influencing factors,and limitations of the existing strategy including an additional lowpass filter in the voltage feed-forward stage are investigated.Secondly,a resonance suppression strategy for the inclusion of additional cascaded notch filters in the voltage feed-forward stage is proposed,and its parameter design method and applicable scenarios are analyzed.In addition,this paper analyzes the effects of the inclusion of an additional control in other stages for the inner controller of the MMC.Finally,the correctness of the theoretical analysis and the proposed strategy is verified based on the simulation of an actual project on PSCAD/EMTDC.
基金supported by Beijing Natural Science Foundation(4232073 and 1232029)the National Natural Science Foundation of China(62175011,62105017,62205276,and 5231101105)+4 种基金the Natural Science Foundation of Hebei Province(F2023105002)the National Research Foundation of Korea(2023K2A9A2A06059546)the support from the Hong Kong Research Grants Council(PolyU 15307321)RGC Senior Research Fellowship Scheme(SRFS2021–5S01)Research Institute for Smart Energy(CDAQ)。
文摘The vertical phase distribution of active layers plays a vital role in balancing exciton dissociation and cha rge transport for achieving efficient polymer solar cells(PSCs).The layer-by-layer(LbL)PSCs are commonly prepared by using sequential spin-coating method from donor and acceptor solutions with distinct solvents and solvent additives.The enhanced exciton dissociation is expected in the LbL PSCs with efficient charge transport in the relatively neat donor or acceptor layers.In this work,a series of LbL all-polymer solar cells(APSCs)were fabricated with PM6 as donor and PY-DT as acceptor,and triplet material m-Ir(CPmPB)_(3)is deliberately incorporated into PY-DT layer to prolong exciton lifetimes of active layers.The power conversion efficiency(PCE)of LbL APSCs is improved to 18.24%from 17.32%by incorporating 0.3 wt%m-Ir(CPMPB)_(3)in PY-DT layer,benefiting from the simultaneously enhanced short-circuit current density(Isc)of 25.17 mA cm^(-2)and fill factor(FF)of 74.70%.The enhancement of PCE is attributed to the efficient energy transfer of m-Ir(CPmPB)_(3)to PM6 and PY-DT,resulting in the prolonged exciton lifetime in the active layer and the increased exciton diffusion distance.The efficient energy transfer from m-Ir(CPmPB)_(3)to PM6 and PY-DT layer can be confirmed by the increased photoluminescence(PL)intensity and the prolonged PL lifetime of PM6 and PY-DT in PM6+m-Ir(CPmPB)_(3)and PY-DT+m-Ir(CPmPB)_(3)films.This study indicates that the triplet material as solid additive has great potential in fabricating efficient LbL APSCs by prolonging exciton lifetimes in active layers.