In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock ...In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.展开更多
An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due ...An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.展开更多
Additional displacement of the building foundations over old goaf are prone to happen under the addi- tional loads induced by new buildings, weakening-rock mass by mining and seismic actions, which will cause serious ...Additional displacement of the building foundations over old goaf are prone to happen under the addi- tional loads induced by new buildings, weakening-rock mass by mining and seismic actions, which will cause serious damage to the buildings. In order to analyze the safety of the building foundations safety over the old goaf. the structure characteristics of the strata over the old goaf was investigated and the instability conditions of overhanging rocks upon old goaf were also analyzed in this paper. The results indicate that the stability of overhanging rocks is remarkably decreased by the interactions of mining fractures, earthquake force and building load, in addition, the settlement of the foundations over old goal is increased by the instability of overhanging rocks. According to the location of a new power plant in Yima Mine and its ambient conditions, we defined the influence scope of old goal via resistivity tomography. Based on the seismic parameters of the construction site, a numerical FLAC3d model of the building foundation under the seismic actions and building load was developed. The numerical results are obtained as follows: the foundation of the main power house meets the requirement of 6° seismic fortification intensity: however, under 7° seismic fortification intensity, the maximum differential settlement of foundation between the neighboring pillars is close to the maximum allowable value, while the seismic fortification intensity reaches 8°, but the safety requirements will not be satisfied.展开更多
Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration t...Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress.展开更多
By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the ...By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the base course of cement-stabilized gravel. Moreover, with the differential settlement at the bottom of the pavement structure as the constraint condition, a plane finite element model is established, which is used to study the stress variation of different pavement layers in response to the differential settlement of varying magnitudes. It shows that, under the effects of the ground differential settlement, the wearing course is subjected to the tensile stress while the base course to the compressive stress and the maximum additional tensile stress and compressive stress occur in the area of 1 m from the splicing joint between the new and the old subgrade. Plastic deformation develops in both layers when the ground differential settlement reaches 14 cm. When the differential settlement at the bottom of the pavement goes up to 1 cm, the maximum additional stress in the surface of the base course will reach 0. 28 MPa, which surpasses 0.276 MPa that is specified in the current specifications as the maximum splitting tensile strength for cement-stabilized base material.展开更多
Based on analysis of additional horizontal stress in the soil underembankment load, the behavior of the lateral deformation of the soil along the depth is studied. Theresult shows that the distribution of lateral defo...Based on analysis of additional horizontal stress in the soil underembankment load, the behavior of the lateral deformation of the soil along the depth is studied. Theresult shows that the distribution of lateral deformation along the depth is arch-shaped, whichcorresponds nicely with the observed data. According to this, a new prediction model is establishedto forecast the lateral deformation. The shapes of the model curve with three parameters in themodel a, b and c are presented. The three parameters can easily be determined by three measured data(s_0, 0), (s_1, h_0)and (s_2, 2h_0). This model is applied to study two cases. The comparisonsillustrate that the displacement predicted by the model corresponds nicely with the measured data.展开更多
The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of s...The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of shield tunnel accurately and take measures to reduce the tunnel upward displacement as much as possible for geotechnical engineers.A new simplified analytical method is proposed to predict the longitudinal deformation of existing metro tunnel due to excavation unloading of adjacent foundation pit in this paper.Firstly,the additional stress of soils under vertical axisymmetric load in layered soil is obtained by using elastic multi-layer theory.Secondly,the metro tunnel is regarded as a Timoshenko beam supported by Winkler foundation so that the shear effect of tunnels can be taken into account.The additional stress acting on the tunnel due to excavation unloading in layered soil are compared with that in homogeneous soil.Additionally,the effectiveness of the analytical solution is verified via two actual cases.Moreover,parametric analysis is conducted to investigate the responses of the metro tunnel by considering such factors as the variation of subgrade coefficient,offset distance from the excavation center to tunnel longitudinal axis as well as equivalent shear stiffness.The proposed method can be used to provide theoretical basis for similar engineering project.展开更多
Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes tha...Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes that occurred overseas since May of 2003 by combining the image data from the National Center for Environmental Prediction of America(NCEP)with the additive tectonic stress from astro-tidal-triggering (ATSA) and makes the following conclusions: The abnormal temperature image data of NCEP can better reflect the spatial-temporal evolution process of tectonic earthquake activity; The ATSA has an evident triggering effect on the activity of a fault when the terra stress is in critical status; using the NCEP images and the ATSA to forecast short-impending earthquake is a new concept; The three earthquakes occurred during the same phase of the respective ATSA cycle, i.e. that occurred at the time when the ATSA reached the relatively steady end of a peak, rather than at the time when the variation rate was maximal. In addition, the author discovered that the occurrence time of other earthquake cases during 2003~2004 in Tibet was also in the same phase of the above-mentioned cycles, and therefore, further study of this feature is needed with more earthquake cases in other areas over longer periods of time.展开更多
Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of different dietary additives [w/w: 2% small peptides, 0.01% probiotics( Bacillus licheniformis) and 0.2% pr...Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of different dietary additives [w/w: 2% small peptides, 0.01% probiotics( Bacillus licheniformis) and 0.2% prebiotics(inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations(13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics(combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme(total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control(28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.展开更多
Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been iden...Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.展开更多
Based on the results of Hu and Lekhnitskii, the united solution of additional vertical stress coefficient for both transversely isotropic and isotropic half-space was obtained. Five typical load cases, namely, vertica...Based on the results of Hu and Lekhnitskii, the united solution of additional vertical stress coefficient for both transversely isotropic and isotropic half-space was obtained. Five typical load cases, namely, vertical circular uniform load, rectangular uniform load, linearly distributed rectangular load, uniform linear and strip loads are studied in detail. The final solutions are expressed in terms of elementary functions. Numerical results show that there are anisotropic effects on the variation of additional vertical stress coefficients.展开更多
A variation model of additive tectonics stress caused by celestial tide-generating force is put forward to explain its relationship with seismic fault sliding. Based on the model, the temperature data from National Ce...A variation model of additive tectonics stress caused by celestial tide-generating force is put forward to explain its relationship with seismic fault sliding. Based on the model, the temperature data from National Center for Environmental Prediction (NCEP) before and after the earthquake in Jiujiang (China) on Nov.26, 2005 are studied. The figure of the temperature variation describes the effect of celestial tide-generating force on fault plane. The variation'of temperature is not only associated with the seismic deformation but also in step with the evolution of fi'iction of rock under the stress. The abnormal change of temperature can be used in the studies of short- impending earthquakes.展开更多
Aiming at the typical engineering problem of black cotton soil(BCS)subgrade under the alternation of dry and wet climate in the region of Nairobi,Kenya,this paper takes the pavement structure as the research object,an...Aiming at the typical engineering problem of black cotton soil(BCS)subgrade under the alternation of dry and wet climate in the region of Nairobi,Kenya,this paper takes the pavement structure as the research object,and the numerical calculation model of BCS subgrade is established based on the consolidation coupling theory of unsaturated soil.Taking the modulus and thickness of the subbase as variables,the deformation characteristics and additional stresses of different pavement structures are analysed.Then the adaptability of different pavement structures to replacement treatment subgrade of BCS is evaluated by gray incidence decision analysis method.The results show that whatever the pavement structure is,neither subgrade modulus nor thickness is sensitive to the pavement surface deformation,and the deformation differences between each pavement structure are more obvious in wet season;the additional stress at control layer bottom and pavement surface decreases with the increase of subbase modulus,whereas the stress may increase at subbase bottom;the additional stress at subbase bottom,control layer bottom and pavement surface all decreases with the increase of subbase thickness for pavement Structure I and II.For pavement Structure III,the change of subbase thickness is not sensitive to the additional stress at the control layer bottom and pavement surface,whereas the stress at subbase bottom increases with the increase of subbase thickness.It is concluded that the most adaptable structure is pavement Structure I,which can minimize the comprehensive level of pavement settlement and additional stress.展开更多
Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fractur...Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fracture mechanics assessment of welded joints requires accurate solutions for stress intensity factor(SIF). However, the solutions for the SIF of complex welded joints are dificult to determine due to the complicated correction factors. Three methods for SIF prediction are discussed on illet welded specimens containing continuous or semi-elliptical surface cracks, including the traditional correction method Mk, the approximate correction method Kt, and the suggested additional crack size method(ac+ae).The new additional crack parameter ae is used to replace the stress concentration effect of weld proile Mk, which simpliies the calculation process. Experimental results are collected to support fatigue strength assessment of the additional crack size method.展开更多
基金This work is supported by the National Natural Science Foundation of China(Nos.51804099 and U1704129)the Focus Research and Special Development for Scientific and Technological Project of Henan Province(No.202102310542)+1 种基金the Fundamental Research Funds for the Central Universities(No.2018ZDPY02ZDPY02)the research fund of State Key Laboratory of Coal Resources and Safe Mining,CUMT(SKLCRSM19KF011).
文摘In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.
文摘An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.
基金the Funds of the State Key Development Program for Basic Research of China (Nos. 2013CB227900, 2010CB226800)the National Natural Science Foundation of China (Nos. 51108161, 51374201)+2 种基金the Open Laboratory Foundation for Deep Mine Construction of Henan Province of China (No. 2011KF-09)the Doctor Foundation in Henan Polytechnic University of China (No. Q2013-065)the Key Program for Science and Technology Research of Henan Province of China (Nos. 14A560002, 14B560021).
文摘Additional displacement of the building foundations over old goaf are prone to happen under the addi- tional loads induced by new buildings, weakening-rock mass by mining and seismic actions, which will cause serious damage to the buildings. In order to analyze the safety of the building foundations safety over the old goaf. the structure characteristics of the strata over the old goaf was investigated and the instability conditions of overhanging rocks upon old goaf were also analyzed in this paper. The results indicate that the stability of overhanging rocks is remarkably decreased by the interactions of mining fractures, earthquake force and building load, in addition, the settlement of the foundations over old goal is increased by the instability of overhanging rocks. According to the location of a new power plant in Yima Mine and its ambient conditions, we defined the influence scope of old goal via resistivity tomography. Based on the seismic parameters of the construction site, a numerical FLAC3d model of the building foundation under the seismic actions and building load was developed. The numerical results are obtained as follows: the foundation of the main power house meets the requirement of 6° seismic fortification intensity: however, under 7° seismic fortification intensity, the maximum differential settlement of foundation between the neighboring pillars is close to the maximum allowable value, while the seismic fortification intensity reaches 8°, but the safety requirements will not be satisfied.
基金funded by the Fundamental Research Funds for the Central UniversitiesCHD(Grant No.300102262503)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grants No.2022JM-167)the National Natural Science Foundation of China(Grant Nos.41790442,41772278,41877242,42072311)the Yan’an Science and Technology Plan Project(Grant No.2022SLSFGG-004)。
文摘Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress.
基金The National Natural Science Foundation of China(No.51008032)the China Postdoctoral Science Foundation(No.2011M501430)the Foundation of Central Universities of Ministry of Education(No.CHD2012JC011,CHD2011JC083)
文摘By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the base course of cement-stabilized gravel. Moreover, with the differential settlement at the bottom of the pavement structure as the constraint condition, a plane finite element model is established, which is used to study the stress variation of different pavement layers in response to the differential settlement of varying magnitudes. It shows that, under the effects of the ground differential settlement, the wearing course is subjected to the tensile stress while the base course to the compressive stress and the maximum additional tensile stress and compressive stress occur in the area of 1 m from the splicing joint between the new and the old subgrade. Plastic deformation develops in both layers when the ground differential settlement reaches 14 cm. When the differential settlement at the bottom of the pavement goes up to 1 cm, the maximum additional stress in the surface of the base course will reach 0. 28 MPa, which surpasses 0.276 MPa that is specified in the current specifications as the maximum splitting tensile strength for cement-stabilized base material.
文摘Based on analysis of additional horizontal stress in the soil underembankment load, the behavior of the lateral deformation of the soil along the depth is studied. Theresult shows that the distribution of lateral deformation along the depth is arch-shaped, whichcorresponds nicely with the observed data. According to this, a new prediction model is establishedto forecast the lateral deformation. The shapes of the model curve with three parameters in themodel a, b and c are presented. The three parameters can easily be determined by three measured data(s_0, 0), (s_1, h_0)and (s_2, 2h_0). This model is applied to study two cases. The comparisonsillustrate that the displacement predicted by the model corresponds nicely with the measured data.
基金Project(51568006)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,China。
文摘The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of shield tunnel accurately and take measures to reduce the tunnel upward displacement as much as possible for geotechnical engineers.A new simplified analytical method is proposed to predict the longitudinal deformation of existing metro tunnel due to excavation unloading of adjacent foundation pit in this paper.Firstly,the additional stress of soils under vertical axisymmetric load in layered soil is obtained by using elastic multi-layer theory.Secondly,the metro tunnel is regarded as a Timoshenko beam supported by Winkler foundation so that the shear effect of tunnels can be taken into account.The additional stress acting on the tunnel due to excavation unloading in layered soil are compared with that in homogeneous soil.Additionally,the effectiveness of the analytical solution is verified via two actual cases.Moreover,parametric analysis is conducted to investigate the responses of the metro tunnel by considering such factors as the variation of subgrade coefficient,offset distance from the excavation center to tunnel longitudinal axis as well as equivalent shear stiffness.The proposed method can be used to provide theoretical basis for similar engineering project.
基金the National Natural Science Fund of China (40172101)
文摘Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes that occurred overseas since May of 2003 by combining the image data from the National Center for Environmental Prediction of America(NCEP)with the additive tectonic stress from astro-tidal-triggering (ATSA) and makes the following conclusions: The abnormal temperature image data of NCEP can better reflect the spatial-temporal evolution process of tectonic earthquake activity; The ATSA has an evident triggering effect on the activity of a fault when the terra stress is in critical status; using the NCEP images and the ATSA to forecast short-impending earthquake is a new concept; The three earthquakes occurred during the same phase of the respective ATSA cycle, i.e. that occurred at the time when the ATSA reached the relatively steady end of a peak, rather than at the time when the variation rate was maximal. In addition, the author discovered that the occurrence time of other earthquake cases during 2003~2004 in Tibet was also in the same phase of the above-mentioned cycles, and therefore, further study of this feature is needed with more earthquake cases in other areas over longer periods of time.
基金Supported by the Ministry of Science and Technology of China(No.2011BAD13B09)the Project of a Special Fund for Public Welfare Industrial(Agriculture)Research of China(No.200903001-5)
文摘Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of different dietary additives [w/w: 2% small peptides, 0.01% probiotics( Bacillus licheniformis) and 0.2% prebiotics(inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations(13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics(combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme(total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control(28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.
基金National Key R&D Program of China:Effectively Utilized and Optimized Surface Water and Groundwater in the Fault Basin(2016YFC0502502)China Geology Survey(DD20190356&DD20189262)+1 种基金Chinese Academy of Geological Sciences(YKWF201628)National Natural Science Foundation of China(No.41272301)
文摘Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.
文摘Based on the results of Hu and Lekhnitskii, the united solution of additional vertical stress coefficient for both transversely isotropic and isotropic half-space was obtained. Five typical load cases, namely, vertical circular uniform load, rectangular uniform load, linearly distributed rectangular load, uniform linear and strip loads are studied in detail. The final solutions are expressed in terms of elementary functions. Numerical results show that there are anisotropic effects on the variation of additional vertical stress coefficients.
基金Supported by the National Natural Science Foundation of China (No.40172101) and China Postdoctoral Science Foundation (No. 20090460403)
文摘A variation model of additive tectonics stress caused by celestial tide-generating force is put forward to explain its relationship with seismic fault sliding. Based on the model, the temperature data from National Center for Environmental Prediction (NCEP) before and after the earthquake in Jiujiang (China) on Nov.26, 2005 are studied. The figure of the temperature variation describes the effect of celestial tide-generating force on fault plane. The variation'of temperature is not only associated with the seismic deformation but also in step with the evolution of fi'iction of rock under the stress. The abnormal change of temperature can be used in the studies of short- impending earthquakes.
基金funded by the National Natural Science Foundation of China,grant number 51878164 and 51922030Southeast University“Zhongying Young Scholars”Project,and Department of Transportation of Shandong Province,grant number 2018B51.
文摘Aiming at the typical engineering problem of black cotton soil(BCS)subgrade under the alternation of dry and wet climate in the region of Nairobi,Kenya,this paper takes the pavement structure as the research object,and the numerical calculation model of BCS subgrade is established based on the consolidation coupling theory of unsaturated soil.Taking the modulus and thickness of the subbase as variables,the deformation characteristics and additional stresses of different pavement structures are analysed.Then the adaptability of different pavement structures to replacement treatment subgrade of BCS is evaluated by gray incidence decision analysis method.The results show that whatever the pavement structure is,neither subgrade modulus nor thickness is sensitive to the pavement surface deformation,and the deformation differences between each pavement structure are more obvious in wet season;the additional stress at control layer bottom and pavement surface decreases with the increase of subbase modulus,whereas the stress may increase at subbase bottom;the additional stress at subbase bottom,control layer bottom and pavement surface all decreases with the increase of subbase thickness for pavement Structure I and II.For pavement Structure III,the change of subbase thickness is not sensitive to the additional stress at the control layer bottom and pavement surface,whereas the stress at subbase bottom increases with the increase of subbase thickness.It is concluded that the most adaptable structure is pavement Structure I,which can minimize the comprehensive level of pavement settlement and additional stress.
基金Project supported by the National Natural Science Foundation of China(No.51609185)the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University(No.1613)
文摘Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fracture mechanics assessment of welded joints requires accurate solutions for stress intensity factor(SIF). However, the solutions for the SIF of complex welded joints are dificult to determine due to the complicated correction factors. Three methods for SIF prediction are discussed on illet welded specimens containing continuous or semi-elliptical surface cracks, including the traditional correction method Mk, the approximate correction method Kt, and the suggested additional crack size method(ac+ae).The new additional crack parameter ae is used to replace the stress concentration effect of weld proile Mk, which simpliies the calculation process. Experimental results are collected to support fatigue strength assessment of the additional crack size method.