期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fast Parallel Algorithm for Slicing STL Based on Pipeline 被引量:4
1
作者 MA Xulong LIN Feng YAO Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期549-555,共7页
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a paral... In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved. 展开更多
关键词 additive manufacturing STL model slicing algorithm data parallel pipeline parallel
下载PDF
Effect of Cu Addition in Pipeline Steels on Microstructure,Mechanical Properties and Microbiologically Influenced Corrosion 被引量:8
2
作者 Xian-Bo Shi Wei Yan +4 位作者 Mao-Cheng Yan Wei Wang Zhen-Guo Yang Yi-Yin Shan Ke Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第7期601-613,共13页
In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modif... In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modified steel were systematically investigated. The Cu-modified steels showed good antimicrobial performance with remarkable strength enhancement by nanoscale Cu-rich precipitates and good impact toughness without changing the original base microstructures after the optimal aging treatment of 500 °C/1 h. 展开更多
关键词 pipeline steel Cu addition Mechanical properties Microstructure Antimicrobial performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部