Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and perme...Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and permeability of polyamide NF membranes. However, nanoadditives generally displayed a poor dispersion in membranes or in fabrication process. To solve this problem, we showed an interesting concept that novel NF membranes with hybrid selective layer consisting of flexible polyisobutylene(PIB) and rigid polyamide could be fabricated from well-defined interfacial polymerization. The hydrophobic polymer mediated phase separation and microdomains formation in polyamide layer were found. The immiscibility between the rigid polyamide and flexible PIB as well as the resultant interface effect was interpreted as the reason for the polymer enhanced permselectivity, which was similar with the well-known thin film nanocomposite(TFN) membranes that nanoparticles incorporated contributed significantly to membrane permeability and rejection performance.Our results have demonstrated that novel NF membranes with enhanced performance can be prepared from immiscible polymers, which is a new area that has not been extensively studied before.展开更多
The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- wa...The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- ware and software development, use of materials, applications, market growth and its development prospects. Focused presentations of Direct Digital Manufacturing (additive manufacturing) compared to traditional mechani- cal manufacturing industry in the use of prices, processing speed, reliability and cost advantages and characteris- tics. Particularly the significant challenges and competitiveness of Direct Digital Manufacturing technology in the processing of any complexity created directly the number of objects, internal structure and channel function, as well as the shape of the chassis components and structure of the matching and optimization.展开更多
Functional periodic structures have attracted significant interest due to their natural capabilities in regulating surface energy, surface effective refractive index, and diffraction. Several technologies are used for...Functional periodic structures have attracted significant interest due to their natural capabilities in regulating surface energy, surface effective refractive index, and diffraction. Several technologies are used for the fabrication of these functional structures. The laser interference technique in particular has received attention because of its simplicity, low cost, and high-efficiency fabrication of large-area, micro/nanometer-scale, and periodically patterned structures in air conditions. Here, we reviewed the work on laser interference fabrication of large-area functional periodic structures for antireflection, self-cleaning, and superhydrophobicity based on our past and current research. For the common cases, four-beam interference and multi-exposure of two-beam interference were emphasized for their setup, structure diversity, and various applications for antireflection, self-cleaning, and superhydrophobicity. The relations between multi-beam interference and multi-exposure of two-beam interference were compared theoretically and experimentally. Nanostructures as a template for growing nanocrystals were also shown to present future possible applications in surface chemical control. Perspectives on future directions and applications for laser interference were presented.展开更多
基金Supported by the National Basic Research Program of China(2015CB655303)the Natural Science Foundation of Zhejiang Province(Q14B040003)
文摘Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and permeability of polyamide NF membranes. However, nanoadditives generally displayed a poor dispersion in membranes or in fabrication process. To solve this problem, we showed an interesting concept that novel NF membranes with hybrid selective layer consisting of flexible polyisobutylene(PIB) and rigid polyamide could be fabricated from well-defined interfacial polymerization. The hydrophobic polymer mediated phase separation and microdomains formation in polyamide layer were found. The immiscibility between the rigid polyamide and flexible PIB as well as the resultant interface effect was interpreted as the reason for the polymer enhanced permselectivity, which was similar with the well-known thin film nanocomposite(TFN) membranes that nanoparticles incorporated contributed significantly to membrane permeability and rejection performance.Our results have demonstrated that novel NF membranes with enhanced performance can be prepared from immiscible polymers, which is a new area that has not been extensively studied before.
文摘The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- ware and software development, use of materials, applications, market growth and its development prospects. Focused presentations of Direct Digital Manufacturing (additive manufacturing) compared to traditional mechani- cal manufacturing industry in the use of prices, processing speed, reliability and cost advantages and characteris- tics. Particularly the significant challenges and competitiveness of Direct Digital Manufacturing technology in the processing of any complexity created directly the number of objects, internal structure and channel function, as well as the shape of the chassis components and structure of the matching and optimization.
基金Acknowledgements H. B. Sun thanks the National Key Research and Development Program of China and the National Natural Science Foundation of China (Grant Nos. 2017YFBI104300, 61590930, 20150203008GX, and 61605055).
文摘Functional periodic structures have attracted significant interest due to their natural capabilities in regulating surface energy, surface effective refractive index, and diffraction. Several technologies are used for the fabrication of these functional structures. The laser interference technique in particular has received attention because of its simplicity, low cost, and high-efficiency fabrication of large-area, micro/nanometer-scale, and periodically patterned structures in air conditions. Here, we reviewed the work on laser interference fabrication of large-area functional periodic structures for antireflection, self-cleaning, and superhydrophobicity based on our past and current research. For the common cases, four-beam interference and multi-exposure of two-beam interference were emphasized for their setup, structure diversity, and various applications for antireflection, self-cleaning, and superhydrophobicity. The relations between multi-beam interference and multi-exposure of two-beam interference were compared theoretically and experimentally. Nanostructures as a template for growing nanocrystals were also shown to present future possible applications in surface chemical control. Perspectives on future directions and applications for laser interference were presented.