The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new gener...The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide(GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction(COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication.展开更多
In this investigation, the addition of several amounts of metal oxide particles (CuO<sub>2</sub>) in Al matrix is carried out due to the need to improve the mechanical properties such as the ductility of a...In this investigation, the addition of several amounts of metal oxide particles (CuO<sub>2</sub>) in Al matrix is carried out due to the need to improve the mechanical properties such as the ductility of aluminum for applications in the electrical sector. Samples were obtained by means of a stirring casting process. From the results of the microstructural characterization, it was observed that the metallic oxides induce the modification of the dendritic structure and grain refinement. X-ray diffraction characterization mainly shows the formation of Al<sub>2</sub>CuO<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub> and CuO compounds. Mechanical properties showed that the different thermal treatments resulted in an improved hardness, from 30 kg/mm<sup>2</sup> for the un-reinforced sample to 90 kg/mm<sup>2</sup> for reinforced samples. The addition of metallic oxides in the Al matrix produces an improved electrical conductivity specifically in sample with 0.50 g of CuO<sub>2</sub> additions.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) ...Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance.展开更多
Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPP...Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPPh_3))_2.Crystals are monoclinic,space group A_2/a,with cell parameters,a=24.337(3),b=10.566(1),c=21.579(2),β= 93.18(1)°, V=5540(1)~3,Z=4,R=0.042,and Rw=0.044 for 5872 observed reflections. Each copper ion is coordinated by four bridging benzoato ligands and one triphenylphosphine oxide group to form binuclear complexes.展开更多
Dibenzoyl peroxide undergoes oxidative addition on metallic copper powder with 2,2′-bipyridine(or imidazole)in a mixed solvent(methanol and tetrahydrofuran),and affords the Cu(Ⅱ)complexes-[Cu(Ce(C_6H_5COO)_2(2,2'...Dibenzoyl peroxide undergoes oxidative addition on metallic copper powder with 2,2′-bipyridine(or imidazole)in a mixed solvent(methanol and tetrahydrofuran),and affords the Cu(Ⅱ)complexes-[Cu(Ce(C_6H_5COO)_2(2,2'-bipy)]H_2O(1) and[Cu(C_6H_5COO)_2(C_3H_4N_2)_2](2).The structure was solved by direct methods and Fourier synthesis.C_(24)H_(20)N_2O_5Cu (1),Mr=479.78,space group P2(1)/c,a=6.986(7), b=18.833(I),c=17.021(3),α=γ=90°,Z=4,V=2218.1~3,Dc=1.443g/cm\+3,R=0.055 Rw=0.062.Complex(2),C_(20)H_(18)N_4O_4Cu(2),Mr=441.74,space group P2(1)/n,a=8.699(4), b=9.840(6),c=12.399(5),α=γ=90°,β=100.8°,Z=4,V=1010.9~3,Dc=1.654g/cm\+3,R=0.055, Rw=0.062.展开更多
The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like ...The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.展开更多
At room temperature, the reaction of dibenzoyl peroxide with metallic copper powder in the presence of pyridine affords the copper(Ⅱ) complex [Cu(C 5H 5N) 2(H 2O)\|(C 6H 5COO) 2]. Crystal is monoclinic, M r =483.002,...At room temperature, the reaction of dibenzoyl peroxide with metallic copper powder in the presence of pyridine affords the copper(Ⅱ) complex [Cu(C 5H 5N) 2(H 2O)\|(C 6H 5COO) 2]. Crystal is monoclinic, M r =483.002, space group Cc with parameters: a=6\^078(4), b=15.879(4), c=23.091(3), β=97.61(2)°, V=2209.1(2) 3, Z=4, D c =1\^464g/cm 3, μ =10.279 cm -1 , F(000)=996, R=0\^031, R w =0.036, 1595 reflections with I≥3σ(I ) were considered to be observed. Each copper(Ⅱ) ion is coordinated by two monodentate benzoate ligands, two pyridines and one water molecule. The complex is also characterized by its IR, XPS and thermal properties.展开更多
This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of m...This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.展开更多
Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,ther...Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,there is a need to summarize the results obtained and evaluate the opportunities for preparing high-performance Mo alloys by strengthening metal oxides and carbides to improve the per-formance characteristics of Mo metal materials.This paper reviews the results of the reported work con-cerning the structure and properties of Mo alloys with different metal oxide and carbide strengthening methods added to Mo matrix.The influence of the doping of La 2 O 3 and Y 2 O 3 particles,ceramic Al 2 O 3 and ZrO 2 particles,and refractory TiC and ZrC carbides particles of Mo alloys are discussed.The impacts of particle morphology,size,distribution and volume fractions of oxide and carbide are analyzed,as well as the specific features of different doping techniques for obtaining high-performance Mo alloys mate-rials.This work will guide future research on the design of high-performance refractory Mo alloys by adding oxides and carbide particles,helping to solve the core issues in the field of superalloy application research.展开更多
FePt films with a high degree of order S of the L10 structure (S 〉 0.90) and well defined [001] crystalline growth perpendicular to the film plane are fabricated on thermally oxidized Si substrates by the addition ...FePt films with a high degree of order S of the L10 structure (S 〉 0.90) and well defined [001] crystalline growth perpendicular to the film plane are fabricated on thermally oxidized Si substrates by the addition of ZnO and a successive rapid thermal annealing (RTA) process. The optimum condition to prepare high-ordering L10 FePtZnO films is 20 vol% ZnO addition and 450 ℃ annealing. The effect of the ZnO additive on the ordering process of the L10 FePtZnO films is discussed. In the annealing process, Zn atoms move to the film surface and evaporate. The motion of the Zn atoms accelerates the intergrain exchange and decreases the ordering temperature.展开更多
At room temperature, dibenzoyl peroxide and pyridine N-oxide reacted with metallic copper powder in a mixed solvent(dichloromethane, trichloromethane and tetrahydrofuran), resulting in a binuclear copper(Ⅱ) complex. ...At room temperature, dibenzoyl peroxide and pyridine N-oxide reacted with metallic copper powder in a mixed solvent(dichloromethane, trichloromethane and tetrahydrofuran), resulting in a binuclear copper(Ⅱ) complex. [Cu (C_5H_5NO)-(C_6H_5COO)_2]_2. The structure of the complex was characterized by elemental analyses.IR spectra and X-ray single crystal analysis. The crystal is triclinic, space group P1,with cell parameters . a= 9. 262(4) ,b= 10. 697(2) , c=10. 881 (3 )A , a=59. 60( 2 ),β= 74. 83 ( 3 ) .Y = 72. 80 ( 2 )°. V= 880. 0 A ̄3 . D_c = 1 . 5 20 g/cm ̄3 . Z = 1 . μ= 1 2. 7 cm-1, R=0. 044 ,R_w=0. 048 for 3477 reflections with I>3σ(I), M_r=805. 78. Each copper(Ⅱ) atom is coordinated by four bridging bidentate benzoate ligands and one pyridine M-oxide.展开更多
Reaction of Cu with dibenzovi peroxide, 2-aminothiazol gave a binuclear complex [Cu_2 (C_6H_5COO)_4(C_3H_4N_2S)_2]. Crystal of the title compound is monoclinic system space group P2_1/n , M_r = 807. 84 with cell param...Reaction of Cu with dibenzovi peroxide, 2-aminothiazol gave a binuclear complex [Cu_2 (C_6H_5COO)_4(C_3H_4N_2S)_2]. Crystal of the title compound is monoclinic system space group P2_1/n , M_r = 807. 84 with cell parameters a= 10. 685 ( 1 ), b=19. 028(6), c=17. 046(9) , β=96. 49(33) ̄°, Z=4, V=3443. 4, D_c=1. 565 g/cm ̄-3, μ= 14. 078 cm ̄-1, F(000)= 824. The final refinement with 3429 observed reflections is converged with R= 0. 046 and R_w=0. 053. X-ray crystal structure analysis revealed that each copper ion is coordinated by four bridging birfentate benzoate ligandsand one Zaminothiazol to form a binuclear molecule. In the crvstal, there are intramolecular hydrogen bonds N (1)- H ( 1 )-O(4) and N (3)- H (3)-O(1) with NO distance of 3. 005, N-H-O angle of 131. 9°.展开更多
Two-electron reduction of[N_(2)NBn]Ti^(Ⅳ)Cl2(3)gave a highly reactive[N_(2)N]Ti^(Ⅱ)species,which underwent C—O bond activation of THF(tetrahydrofuran)to generate[N2NBn]Ti^(Ⅳ)[O(CH2)4](4)through oxidative addition....Two-electron reduction of[N_(2)NBn]Ti^(Ⅳ)Cl2(3)gave a highly reactive[N_(2)N]Ti^(Ⅱ)species,which underwent C—O bond activation of THF(tetrahydrofuran)to generate[N2NBn]Ti^(Ⅳ)[O(CH2)4](4)through oxidative addition.The resulted Ti^(Ⅳ)-Csp^(3)bond in oxametallacyclo-hexane was tantamount to the elaborately-designed Ti-alkyl complexes,competent to activate intramolecular Csp^(2)-H bond,forming ortho-cyclometalated complex[N_(2)NCH_(2)C_(6)H_(4)]Ti^(Ⅳ)(O^(n)Bu)(5).Key intermediates were isolated and fully characterized by X-ray crystal-lography.Mechanistic studies revealed that the oxidative addition of C-O bond took place at Ti^(Ⅱ)-center via a radical intermediate,while a Csp^(2)-H bond activation proceeded byσ-bond metathesis with a kitelike four-centered Ti^(Ⅳ)-transition state.展开更多
A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO ...A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.展开更多
At room temperature, dibenzoyl peroxide undergoes oxidative addition reaction with metallic copper powder and pyridine N-oxide (triphenylphosphine oxide or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin) which affords t...At room temperature, dibenzoyl peroxide undergoes oxidative addition reaction with metallic copper powder and pyridine N-oxide (triphenylphosphine oxide or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin) which affords the last products as binuclear copper(II) complexes, [Cu(C5H5NO)-(C6H5COO)2]2(1), [Cu(OPPh3)(C6H5COO)2]2(2) and [Cu(C6H5COO)(C26H2oN2)](3, C26H2oN2 is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin). The structure of the complexes were characterized by elemental analyses, IR spectra, TG-DTA and magnetic property. Crystals(1) are triclinic, space group P1,a=0.92617(36),b=1.06973(17), c=1.08813(29) nm, a=59.60(2)°, β=74.83(3)°,γ=72.80(2)°, V=0.880 nm3, Dc=1.520 g/cm3, Z=1, R=0.044, Rw=0.048, Mr=805.78, 3477 reflections with I > 3σ(I). Each copper(Ⅱ) ion is coordinated by two bridging bidentate benzoate ligands and one pyridine N-oxide or triphenylphosphine oxide to form dimeric binuclear molecules. The structure of the compound(1) shows a clear centre of symmetry.展开更多
Electrochemical oxidation of hydroquinone(1a) has been studied in the presence of 6-methyl-2-thiouracil(3a) and 6-propyl-2-thiouracil(3b) as nucleophiles in a DMF/buffer mixture,using cyclic voltammetry and cont...Electrochemical oxidation of hydroquinone(1a) has been studied in the presence of 6-methyl-2-thiouracil(3a) and 6-propyl-2-thiouracil(3b) as nucleophiles in a DMF/buffer mixture,using cyclic voltammetry and controlled-potential coulometry.The results indicated that the p-quinone(2a) derived from 1a participates in a 1 4-Michael addition reaction with the thiouracil derivatives(3a–b) to form the corresponding hydroquinonethioether derivatives(6a–6b).The electrosynthesis of these compounds(6a–b) has been successfully performed on carbon rod electrodes in an undivided cell in good yield and purity.展开更多
Sodium perfluoroalkanesulfinates [Cl(CF_2)n SO_2 Na (1), a, n=4; b, n=6; c, n=8] with the reduction potentials about 0.95-1.00V could be oxidized readily with various oxidizing agents such as Mn (OAc)_3·2H_2O, Ce...Sodium perfluoroalkanesulfinates [Cl(CF_2)n SO_2 Na (1), a, n=4; b, n=6; c, n=8] with the reduction potentials about 0.95-1.00V could be oxidized readily with various oxidizing agents such as Mn (OAc)_3·2H_2O, Ce(SO_4)_2, HgSO_4 and Co_2O_3 to generate perfluoroalkyl radicals which added to the olefins RCH=CHR′to give two kinds of adducts, namely RCH (R_f) CHXR′(3, X=H; 4, X=OAc), with good yields depending upon the solvent system used. Different oxidizing agents showed slight variation on the yields of the adducts. The reaction time could be greatly shortened at higher temperature. Thus, this reaction provides a new way for introducing a perfluoroalkyl group into olefinic compounds.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51335005,51321092)National Key Basic Research Program of China(973 Program,Grant No.2013CB934200)the Foundation for the Supervisor of Beijing Excellent Doctoral Dissertation(Grant No.20111000305)
文摘The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide(GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction(COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication.
文摘In this investigation, the addition of several amounts of metal oxide particles (CuO<sub>2</sub>) in Al matrix is carried out due to the need to improve the mechanical properties such as the ductility of aluminum for applications in the electrical sector. Samples were obtained by means of a stirring casting process. From the results of the microstructural characterization, it was observed that the metallic oxides induce the modification of the dendritic structure and grain refinement. X-ray diffraction characterization mainly shows the formation of Al<sub>2</sub>CuO<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub> and CuO compounds. Mechanical properties showed that the different thermal treatments resulted in an improved hardness, from 30 kg/mm<sup>2</sup> for the un-reinforced sample to 90 kg/mm<sup>2</sup> for reinforced samples. The addition of metallic oxides in the Al matrix produces an improved electrical conductivity specifically in sample with 0.50 g of CuO<sub>2</sub> additions.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
基金Funded by National Natural Science Foundation of China(No.51371039)Zhejiang Provincial Natural Science Foundation of China(No.LGG18E020004)+1 种基金Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical EngineeringScience and Technology Project of Zhejiang Province(No.2015C37037)
文摘Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance.
文摘Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPPh_3))_2.Crystals are monoclinic,space group A_2/a,with cell parameters,a=24.337(3),b=10.566(1),c=21.579(2),β= 93.18(1)°, V=5540(1)~3,Z=4,R=0.042,and Rw=0.044 for 5872 observed reflections. Each copper ion is coordinated by four bridging benzoato ligands and one triphenylphosphine oxide group to form binuclear complexes.
文摘Dibenzoyl peroxide undergoes oxidative addition on metallic copper powder with 2,2′-bipyridine(or imidazole)in a mixed solvent(methanol and tetrahydrofuran),and affords the Cu(Ⅱ)complexes-[Cu(Ce(C_6H_5COO)_2(2,2'-bipy)]H_2O(1) and[Cu(C_6H_5COO)_2(C_3H_4N_2)_2](2).The structure was solved by direct methods and Fourier synthesis.C_(24)H_(20)N_2O_5Cu (1),Mr=479.78,space group P2(1)/c,a=6.986(7), b=18.833(I),c=17.021(3),α=γ=90°,Z=4,V=2218.1~3,Dc=1.443g/cm\+3,R=0.055 Rw=0.062.Complex(2),C_(20)H_(18)N_4O_4Cu(2),Mr=441.74,space group P2(1)/n,a=8.699(4), b=9.840(6),c=12.399(5),α=γ=90°,β=100.8°,Z=4,V=1010.9~3,Dc=1.654g/cm\+3,R=0.055, Rw=0.062.
基金This work was supported by the National Natural Science Foundation of China (No.20776089) and the New Century Excellent Talents Program of Ministry of Education (No.NCET-05-0783). The State Key Laboratory of Polymer Materials Engineering in Sichuan University was acknowledged for providing dmol3 modules and Prof. Ying Xue, Xiang-yuan Li, and Quan Zhu were grateful for the useful discussions.
文摘The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.
文摘At room temperature, the reaction of dibenzoyl peroxide with metallic copper powder in the presence of pyridine affords the copper(Ⅱ) complex [Cu(C 5H 5N) 2(H 2O)\|(C 6H 5COO) 2]. Crystal is monoclinic, M r =483.002, space group Cc with parameters: a=6\^078(4), b=15.879(4), c=23.091(3), β=97.61(2)°, V=2209.1(2) 3, Z=4, D c =1\^464g/cm 3, μ =10.279 cm -1 , F(000)=996, R=0\^031, R w =0.036, 1595 reflections with I≥3σ(I ) were considered to be observed. Each copper(Ⅱ) ion is coordinated by two monodentate benzoate ligands, two pyridines and one water molecule. The complex is also characterized by its IR, XPS and thermal properties.
基金financially supported by Guangdong Innovative and Entrepreneurial Research Team Program ( No. 2013G061)the National Natural Science Foundation of China ( No. 51402055)
文摘This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.
基金the Outstanding Doctorate Dis-sertation Cultivation Fund of Xi’an University of Architecture and Technology(No.160842012)ScientificandTechnologicalInnova-tion Team Project of the Shaanxi Innovation Capability Support Plan,China(No.2022TD-30)+8 种基金the Fok Ying Tung Education Foun-dation(No.171101)Youth Innovation Team of Shaanxi Universi-ties(No.2019-2022)Top young talents project of“Special support program for high-level talents”in the Shaanxi Province(No.2018-2023)Major scientific and technological projects in the Shaanxi Province of China(No.2020ZDZX04-02-01)Service local spe-cial program of education department of Shaanxi province,China(No.21JC016)General Special Scientific Research Program of the Shaanxi Provincial Department of Education(No.21JK0722)the General Projects of Key R&D Program of the Shaanxi Province,China(No.2021GY-209)China Postdoctoral Science Foundation(No.2021M693878)China Postdoctoral Science Foundation(No.2021MD703866).
文摘Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,there is a need to summarize the results obtained and evaluate the opportunities for preparing high-performance Mo alloys by strengthening metal oxides and carbides to improve the per-formance characteristics of Mo metal materials.This paper reviews the results of the reported work con-cerning the structure and properties of Mo alloys with different metal oxide and carbide strengthening methods added to Mo matrix.The influence of the doping of La 2 O 3 and Y 2 O 3 particles,ceramic Al 2 O 3 and ZrO 2 particles,and refractory TiC and ZrC carbides particles of Mo alloys are discussed.The impacts of particle morphology,size,distribution and volume fractions of oxide and carbide are analyzed,as well as the specific features of different doping techniques for obtaining high-performance Mo alloys mate-rials.This work will guide future research on the design of high-performance refractory Mo alloys by adding oxides and carbide particles,helping to solve the core issues in the field of superalloy application research.
文摘FePt films with a high degree of order S of the L10 structure (S 〉 0.90) and well defined [001] crystalline growth perpendicular to the film plane are fabricated on thermally oxidized Si substrates by the addition of ZnO and a successive rapid thermal annealing (RTA) process. The optimum condition to prepare high-ordering L10 FePtZnO films is 20 vol% ZnO addition and 450 ℃ annealing. The effect of the ZnO additive on the ordering process of the L10 FePtZnO films is discussed. In the annealing process, Zn atoms move to the film surface and evaporate. The motion of the Zn atoms accelerates the intergrain exchange and decreases the ordering temperature.
文摘At room temperature, dibenzoyl peroxide and pyridine N-oxide reacted with metallic copper powder in a mixed solvent(dichloromethane, trichloromethane and tetrahydrofuran), resulting in a binuclear copper(Ⅱ) complex. [Cu (C_5H_5NO)-(C_6H_5COO)_2]_2. The structure of the complex was characterized by elemental analyses.IR spectra and X-ray single crystal analysis. The crystal is triclinic, space group P1,with cell parameters . a= 9. 262(4) ,b= 10. 697(2) , c=10. 881 (3 )A , a=59. 60( 2 ),β= 74. 83 ( 3 ) .Y = 72. 80 ( 2 )°. V= 880. 0 A ̄3 . D_c = 1 . 5 20 g/cm ̄3 . Z = 1 . μ= 1 2. 7 cm-1, R=0. 044 ,R_w=0. 048 for 3477 reflections with I>3σ(I), M_r=805. 78. Each copper(Ⅱ) atom is coordinated by four bridging bidentate benzoate ligands and one pyridine M-oxide.
文摘Reaction of Cu with dibenzovi peroxide, 2-aminothiazol gave a binuclear complex [Cu_2 (C_6H_5COO)_4(C_3H_4N_2S)_2]. Crystal of the title compound is monoclinic system space group P2_1/n , M_r = 807. 84 with cell parameters a= 10. 685 ( 1 ), b=19. 028(6), c=17. 046(9) , β=96. 49(33) ̄°, Z=4, V=3443. 4, D_c=1. 565 g/cm ̄-3, μ= 14. 078 cm ̄-1, F(000)= 824. The final refinement with 3429 observed reflections is converged with R= 0. 046 and R_w=0. 053. X-ray crystal structure analysis revealed that each copper ion is coordinated by four bridging birfentate benzoate ligandsand one Zaminothiazol to form a binuclear molecule. In the crvstal, there are intramolecular hydrogen bonds N (1)- H ( 1 )-O(4) and N (3)- H (3)-O(1) with NO distance of 3. 005, N-H-O angle of 131. 9°.
基金support from the National Natural Science Foundation of China(Nos.21988101,21881220232,21811530004,21761132027,22071029,22201044,U19B6002)Key-Area Research and Development Program of Guangdong Province(2020B010188001).
文摘Two-electron reduction of[N_(2)NBn]Ti^(Ⅳ)Cl2(3)gave a highly reactive[N_(2)N]Ti^(Ⅱ)species,which underwent C—O bond activation of THF(tetrahydrofuran)to generate[N2NBn]Ti^(Ⅳ)[O(CH2)4](4)through oxidative addition.The resulted Ti^(Ⅳ)-Csp^(3)bond in oxametallacyclo-hexane was tantamount to the elaborately-designed Ti-alkyl complexes,competent to activate intramolecular Csp^(2)-H bond,forming ortho-cyclometalated complex[N_(2)NCH_(2)C_(6)H_(4)]Ti^(Ⅳ)(O^(n)Bu)(5).Key intermediates were isolated and fully characterized by X-ray crystal-lography.Mechanistic studies revealed that the oxidative addition of C-O bond took place at Ti^(Ⅱ)-center via a radical intermediate,while a Csp^(2)-H bond activation proceeded byσ-bond metathesis with a kitelike four-centered Ti^(Ⅳ)-transition state.
基金Project supported by the National Key Research and Development Program of China(2016YFC0205500)National Natural Science Foundation of China(51772149)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.
基金Project supported by the National Natural Science Foundation of China and Nanjing Coordination Key Lab Foundation of China.
文摘At room temperature, dibenzoyl peroxide undergoes oxidative addition reaction with metallic copper powder and pyridine N-oxide (triphenylphosphine oxide or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin) which affords the last products as binuclear copper(II) complexes, [Cu(C5H5NO)-(C6H5COO)2]2(1), [Cu(OPPh3)(C6H5COO)2]2(2) and [Cu(C6H5COO)(C26H2oN2)](3, C26H2oN2 is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin). The structure of the complexes were characterized by elemental analyses, IR spectra, TG-DTA and magnetic property. Crystals(1) are triclinic, space group P1,a=0.92617(36),b=1.06973(17), c=1.08813(29) nm, a=59.60(2)°, β=74.83(3)°,γ=72.80(2)°, V=0.880 nm3, Dc=1.520 g/cm3, Z=1, R=0.044, Rw=0.048, Mr=805.78, 3477 reflections with I > 3σ(I). Each copper(Ⅱ) ion is coordinated by two bridging bidentate benzoate ligands and one pyridine N-oxide or triphenylphosphine oxide to form dimeric binuclear molecules. The structure of the compound(1) shows a clear centre of symmetry.
基金Semnan University Research Council for financial supports of this work
文摘Electrochemical oxidation of hydroquinone(1a) has been studied in the presence of 6-methyl-2-thiouracil(3a) and 6-propyl-2-thiouracil(3b) as nucleophiles in a DMF/buffer mixture,using cyclic voltammetry and controlled-potential coulometry.The results indicated that the p-quinone(2a) derived from 1a participates in a 1 4-Michael addition reaction with the thiouracil derivatives(3a–b) to form the corresponding hydroquinonethioether derivatives(6a–6b).The electrosynthesis of these compounds(6a–b) has been successfully performed on carbon rod electrodes in an undivided cell in good yield and purity.
文摘Sodium perfluoroalkanesulfinates [Cl(CF_2)n SO_2 Na (1), a, n=4; b, n=6; c, n=8] with the reduction potentials about 0.95-1.00V could be oxidized readily with various oxidizing agents such as Mn (OAc)_3·2H_2O, Ce(SO_4)_2, HgSO_4 and Co_2O_3 to generate perfluoroalkyl radicals which added to the olefins RCH=CHR′to give two kinds of adducts, namely RCH (R_f) CHXR′(3, X=H; 4, X=OAc), with good yields depending upon the solvent system used. Different oxidizing agents showed slight variation on the yields of the adducts. The reaction time could be greatly shortened at higher temperature. Thus, this reaction provides a new way for introducing a perfluoroalkyl group into olefinic compounds.