期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Identification and Estimation of Generalized Additive Partial Linear Models with Nonignorable Missing Response
1
作者 Jierui Du Yuan Li Xia Cui 《Communications in Mathematics and Statistics》 SCIE CSCD 2024年第1期113-156,共44页
The generalized additive partial linear models(GAPLM)have been widely used for flexiblemodeling of various types of response.In practice,missing data usually occurs in studies of economics,medicine,and public health.W... The generalized additive partial linear models(GAPLM)have been widely used for flexiblemodeling of various types of response.In practice,missing data usually occurs in studies of economics,medicine,and public health.We address the problem of identifying and estimating GAPLM when the response variable is nonignorably missing.Three types of monotone missing data mechanism are assumed,including logistic model,probit model and complementary log-log model.In this situation,likelihood based on observed data may not be identifiable.In this article,we show that the parameters of interest are identifiable under very mild conditions,and then construct the estimators of the unknown parameters and unknown functions based on a likelihood-based approach by expanding the unknown functions as a linear combination of polynomial spline functions.We establish asymptotic normality for the estimators of the parametric components.Simulation studies demonstrate that the proposed inference procedure performs well in many settings.We apply the proposed method to the household income dataset from the Chinese Household Income Project Survey 2013. 展开更多
关键词 Generalized additive partial linear models Nonignorable missingness IDENTIFIABILITY Observed likelihood
原文传递
Neural partially linear additive model
2
作者 Liangxuan ZHU Han LI +2 位作者 Xuelin ZHANG Lingjuan WU Hong CHEN 《Frontiers of Computer Science》 SCIE EI 2024年第6期149-165,共17页
Interpretability has drawn increasing attention in machine learning.Most works focus on post-hoc explanations rather than building a self-explaining model.So,we propose a Neural Partially Linear Additive Model(NPLAM),... Interpretability has drawn increasing attention in machine learning.Most works focus on post-hoc explanations rather than building a self-explaining model.So,we propose a Neural Partially Linear Additive Model(NPLAM),which automatically distinguishes insignificant,linear,and nonlinear features in neural networks.On the one hand,neural network construction fits data better than spline function under the same parameter amount;on the other hand,learnable gate design and sparsity regular-term maintain the ability of feature selection and structure discovery.We theoretically establish the generalization error bounds of the proposed method with Rademacher complexity.Experiments based on both simulations and real-world datasets verify its good performance and interpretability. 展开更多
关键词 feature selection structure discovery partially linear additive model neural network
原文传递
Profile Statistical Inference for Partially Linear Additive Models with a Diverging Number of Parameters
3
作者 WANG Xiuli ZHAO Shengli WANG Mingqiu 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第6期1747-1766,共20页
This paper considers partially linear additive models with the number of parameters diverging when some linear cons train ts on the parame trie par t are available.This paper proposes a constrained profile least-squar... This paper considers partially linear additive models with the number of parameters diverging when some linear cons train ts on the parame trie par t are available.This paper proposes a constrained profile least-squares estimation for the parametrie components with the nonparametric functions being estimated by basis function approximations.The consistency and asymptotic normality of the restricted estimator are given under some certain conditions.The authors construct a profile likelihood ratio test statistic to test the validity of the linear constraints on the parametrie components,and demonstrate that it follows asymptotically chi-squared distribution under the null and alternative hypo theses.The finite sample performance of the proposed method is illus trated by simulation studies and a data analysis. 展开更多
关键词 B-spline basis constrained profile least-squares estimation diverging partially linear additive models profile likelihood ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部