期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
AENO:a Novel Reconstruction Method in Conjunction with ADER Schemes for Hyperbolic Equations
1
作者 Eleuterio F.Toro Andrea Santacá +2 位作者 Gino I.Montecinos Morena Celant Lucas O.Müller 《Communications on Applied Mathematics and Computation》 2023年第2期776-852,共77页
In this paper,we present a novel spatial reconstruction scheme,called AENO,that results from a special averaging of the ENO polynomial and its closest neighbour,while retaining the stencil direction decided by the ENO... In this paper,we present a novel spatial reconstruction scheme,called AENO,that results from a special averaging of the ENO polynomial and its closest neighbour,while retaining the stencil direction decided by the ENO choice.A variant of the scheme,called m-AENO,results from averaging the modified ENO(m-ENO)polynomial and its closest neighbour.The concept is thoroughly assessed for the one-dimensional linear advection equation and for a one-dimensional non-linear hyperbolic system,in conjunction with the fully discrete,high-order ADER approach implemented up to fifth order of accuracy in both space and time.The results,as compared to the conventional ENO,m-ENO and WENO schemes,are very encouraging.Surprisingly,our results show that the L_(1)-errors of the novel AENO approach are the smallest for most cases considered.Crucially,for a chosen error size,AENO turns out to be the most efficient method of all five methods tested. 展开更多
关键词 Hyperbolic equations High-order ader ENO/m-ENO/WENO Novel reconstruction technique AENO/m-AENO
下载PDF
浅水波方程的高阶保正Well-Balanced ADER间断Galerkin格式
2
作者 周翔宇 张志壮 +1 位作者 钱守国 李刚 《应用数学进展》 2023年第8期3728-3743,共16页
本文针对具有不规则几何形状和非平坦底地形的浅水波方程,引入了保正高阶ADER间断Galerkin方法,该方法能准确地保持静水的稳态。为了满足well-balanced的性质,我们提出了well-balanced的数值通量,并基于分解算法将数值解分解为两部分,... 本文针对具有不规则几何形状和非平坦底地形的浅水波方程,引入了保正高阶ADER间断Galerkin方法,该方法能准确地保持静水的稳态。为了满足well-balanced的性质,我们提出了well-balanced的数值通量,并基于分解算法将数值解分解为两部分,构造了一种新的源项近似,并相应地将源项近似分解为两部分。此外,还引入了一个简单的保正限制器,从而在干湿锋面附近提供高效和鲁棒性的模拟。大量的数值实验也表明,所得到的格式s能够准确地捕捉静止稳定状态下湖泊的小扰动,保持水面高度的非负性,同时保持光滑解的真正高阶精度。 展开更多
关键词 浅水波方程 ader方法 间断Galerkin格式 保证格式 微分变换过程 全离散
下载PDF
非守恒双曲方程组的路径守恒ADER间断Galerkin方法:在浅水方程中的应用
3
作者 赵晓旭 刘仁迪 +1 位作者 钱守国 李刚 《应用数学进展》 2023年第7期3381-3397,共17页
本文提出了求解非守恒双曲型偏微分方程的一种新的路径守恒间断Galerkin (DG)方法。特别地,这里的方法采用了一级ADER (在空间和时间的任意导数)方法来实现时间离散化。此外,该方法采用微分变换(DT)过程而不是Cauchy-Kowalewski (C-K)... 本文提出了求解非守恒双曲型偏微分方程的一种新的路径守恒间断Galerkin (DG)方法。特别地,这里的方法采用了一级ADER (在空间和时间的任意导数)方法来实现时间离散化。此外,该方法采用微分变换(DT)过程而不是Cauchy-Kowalewski (C-K)过程来实现局部时间演化。与经典的ADER方法相比,该方法不需要求解内部单元的广义黎曼问题。与RKDG (Runge-Kutta DG)方法相比,该方法不需要中间步骤,因此需要较少的计算机存储空间。简而言之,当前的方法是一步一步完全离散的。而且,该方法在空间和时间上都容易获得高阶精度。浅水方程的数值结果表明,该方法具有较高的阶精度,对间断解具有较好的分辨率。 展开更多
关键词 非守恒双曲方程组 ader的方法 DG方法 DT过程
下载PDF
鲍曼不动杆菌主动外排系统adeR基因分布及耐药性分析 被引量:1
4
作者 蔡燕 曾丽红 +6 位作者 潘雪 梁奕 彭乙华 青鑫 何城 张婷 黄义山 《检验医学与临床》 CAS 2019年第4期438-440,共3页
目的通过检测外排泵基因adeR在鲍曼不动杆菌中的分布及对临床常用抗菌药物的药敏情况,初步探讨外排泵对鲍曼不动杆菌耐药性的影响。方法采用聚合酶链反应(PCR)检测84株鲍曼不动杆菌外排泵基因adeR的分布情况,并根据PCR结果将菌株分为ade... 目的通过检测外排泵基因adeR在鲍曼不动杆菌中的分布及对临床常用抗菌药物的药敏情况,初步探讨外排泵对鲍曼不动杆菌耐药性的影响。方法采用聚合酶链反应(PCR)检测84株鲍曼不动杆菌外排泵基因adeR的分布情况,并根据PCR结果将菌株分为adeR基因阳性组和adeR基因阴性组,比较两组鲍曼不动杆菌对阿米卡星、头孢吡肟、左氧氟沙星和亚胺培南的耐药率。结果 PCR结果显示,收集的鲍曼不动杆菌adeR基因阳性率为70.24%(59/84);adeR基因阳性组对阿米卡星、头孢吡肟、左氧氟沙星和亚胺培南的耐药率分别为83.93%、90.74%、84.75%和67.80%;adeR基因阴性组对各抗菌药物的耐药率分别为58.33%、73.91%、56.00%和44.00%;两组间耐药率比较,差异有统计学意义(P<0.05)。结论外排泵基因adeR在该地区鲍曼不动杆菌中的检出率较高,与临床常用抗菌药物耐药情况高度相关,提示外排系统是该地区鲍曼不动杆菌多重耐药的重要原因之一。 展开更多
关键词 鲍曼不动杆菌 耐药 外排泵 ader基因
下载PDF
Application of ADER Scheme in MHD Simulation 被引量:1
5
作者 ZHANG Yanyan FENG Xueshang +1 位作者 JIANG Chaowei ZHOU Yufen 《空间科学学报》 CAS CSCD 北大核心 2012年第2期170-181,共12页
The Arbitrary accuracy Derivatives Riemann problem method(ADER) scheme is a new high order numerical scheme based on the concept of finite volume integration,and it is very easy to be extended up to any order of space... The Arbitrary accuracy Derivatives Riemann problem method(ADER) scheme is a new high order numerical scheme based on the concept of finite volume integration,and it is very easy to be extended up to any order of space and time accuracy by using a Taylor time expansion at the cell interface position.So far the approach has been applied successfully to flow mechanics problems.Our objective here is to carry out the extension of multidimensional ADER schemes to multidimensional MHD systems of conservation laws by calculating several MHD problems in one and two dimensions: (ⅰ) Brio-Wu shock tube problem,(ⅱ) Dai-Woodward shock tube problem,(ⅲ) Orszag-Tang MHD vortex problem.The numerical results prove that the ADER scheme possesses the ability to solve MHD problem,remains high order accuracy both in space and time,keeps precise in capturing the shock.Meanwhile,the compared tests show that the ADER scheme can restrain the oscillation and obtain the high order non-oscillatory result. 展开更多
关键词 ader scheme Generalized Riemann problem MHD numerical simulation HLL scheme
下载PDF
ADER Methods for Hyperbolic Equations with a Time-Reconstruction Solver for the Generalized Riemann Problem: the Scalar Case 被引量:1
6
作者 R.Demattè V.A.Titarev +1 位作者 G.I.Montecinos E.F.Toro 《Communications on Applied Mathematics and Computation》 2020年第3期369-402,共34页
The ADER approach to solve hyperbolic equations to very high order of accuracy has seen explosive developments in the last few years,including both methodological aspects as well as very ambitious applications.In spit... The ADER approach to solve hyperbolic equations to very high order of accuracy has seen explosive developments in the last few years,including both methodological aspects as well as very ambitious applications.In spite of methodological progress,the issues of efficiency and ease of implementation of the solution of the associated generalized Riemann problem(GRP)remain the centre of attention in the ADER approach.In the original formulation of ADER schemes,the proposed solution procedure for the GRP was based on(i)Taylor series expansion of the solution in time right at the element interface,(ii)subsequent application of the Cauchy-Kowalewskaya procedure to convert time derivatives to functionals of space derivatives,and(iii)solution of classical Riemann problems for high-order spatial derivatives to complete the Taylor series expansion.For realistic problems the Cauchy-Kowalewskaya procedure requires the use of symbolic manipulators and being rather cumbersome its replacement or simplification is highly desirable.In this paper we propose a new class of solvers for the GRP that avoid the Cauchy-Kowalewskaya procedure and result in simpler ADER schemes.This is achieved by exploiting the history of the numerical solution that makes it possible to devise a time-reconstruction procedure at the element interface.Still relying on a time Taylor series expansion of the solution at the interface,the time derivatives are then easily calculated from the time-reconstruction polynomial.The resulting schemes are called ADER-TR.A thorough study of the linear stability properties of the linear version of the schemes is carried out using the von Neumann method,thus deducing linear stability regions.Also,via careful numerical experiments,we deduce stability regions for the corresponding non-linear schemes.Numerical examples using the present simplified schemes of fifth and seventh order of accuracy in space and time show that these compare favourably with conventional ADER methods.This paper is restricted to the one-dimensional scalar case with source term,but preliminary results for the one-dimensional Euler equations indicate that the time-reconstruction approach offers significant advantages not only in terms of ease of implementation but also in terms of efficiency for the high-order range schemes. 展开更多
关键词 Hyperbolic equations Finite volume ader methods Generalized Riemann problem(GRP) Time-reconstruction(TR)
下载PDF
一维守恒的Lagrangian ADER格式
7
作者 程军波 Eleuterio F.Toro 《计算物理》 CSCD 北大核心 2013年第4期501-508,共8页
基于欧拉框架下ADER格式,构造一维守恒只有一个时间步的、高精度中心型拉格朗日ADER(LADER)格式.构造r阶LADER格式包括:从欧拉方程出发推导拉格朗日框架下积分形式的方程、采用WENO方法高精度重构节点处守恒量和从1阶到r-1阶的空间导数... 基于欧拉框架下ADER格式,构造一维守恒只有一个时间步的、高精度中心型拉格朗日ADER(LADER)格式.构造r阶LADER格式包括:从欧拉方程出发推导拉格朗日框架下积分形式的方程、采用WENO方法高精度重构节点处守恒量和从1阶到r-1阶的空间导数、求拉氏框架下这些变量的Godunov值,并计算1阶到r-1阶的时间全导数,最后高精度离散积分形式的流通量函数.对光滑流场的模拟表明,LADER格式达到设计的精度;对含强间断的流场模拟表明,数值解在间断附近基本无振荡. 展开更多
关键词 中心型拉格朗日格式 任意高精度格式 时空高精度
下载PDF
双曲守恒律方程的高精度ADER间断Galerkin方法
8
作者 张莹娟 李姣姣 李刚 《应用数学进展》 2020年第8期1263-1272,共10页
本文提出了一种全新的间断Galerkin (DG)方法,该方法使用单级ADER (任意时–空导数)方式进行时间离散。该方法利用微分变换步骤递归地将解的时–空展开系数通过低阶空间展开系数来表示,能够在空间和时间上达到任意高阶精度。与传统有限... 本文提出了一种全新的间断Galerkin (DG)方法,该方法使用单级ADER (任意时–空导数)方式进行时间离散。该方法利用微分变换步骤递归地将解的时–空展开系数通过低阶空间展开系数来表示,能够在空间和时间上达到任意高阶精度。与传统有限体积ADER格式相比较,该方法避免了在单元界面处求解广义Riemann问题。与多级Runge-Kutta DG (RKDG)方法相比较,由于不存在中间级,本方法需要较少的计算机内存。综上所述,所得到的方法是单步的、单级的、全离散的。最后,经典数值算例验证了该方法的良好性能:高精度、高分辨率、高效率。 展开更多
关键词 双曲守恒律 间断GALERKIN方法 ader 微分变换 高阶精度
下载PDF
High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation
9
作者 Michel Bergmann Afaf Bouharguane +1 位作者 Angelo Iollo Alexis Tardieu 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1954-1977,共24页
We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretiz... We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches. 展开更多
关键词 Advection-diffusion Galerkin Arbitrary high order DERivatives(ader)approach Interior Penalty Discontinuous Galerkin(IPDG) High-order schemes Empirical convergence rates
下载PDF
AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME FOR DIRECTLY SOLVING HAMILTON-JACOBI EQUATION 被引量:1
10
作者 Junming Duan Huazhong Tang 《Journal of Computational Mathematics》 SCIE CSCD 2020年第1期58-83,共26页
This paper proposes an efficient ADER(Arbitrary DERivatives in space and time)discontinuous Galerkin(DG)scheme to directly solve the Hamilton-Jacobi equation.Unlike multi-stage Runge-Kutta methods used in the Runge-Ku... This paper proposes an efficient ADER(Arbitrary DERivatives in space and time)discontinuous Galerkin(DG)scheme to directly solve the Hamilton-Jacobi equation.Unlike multi-stage Runge-Kutta methods used in the Runge-Kutta DG(RKDG)schemes,the ADER scheme is one-stage in time discretization,which is desirable in many applications.The ADER scheme used here relies on a local continuous spacetime Galerkin predictor instead of the usual Cauchy-Kovalewski procedure to achieve high order accuracy both in space and time.In such predictor step,a local Cauchy problem in each cell is solved based on a weak formulation of the original equations in spacetime.The resulting spacetime representation of the numerical solution provides the temporal accuracy that matches the spatial accuracy of the underlying DG solution.The scheme is formulated in the modal space and the volume integral and the numerical fluxes at the cell interfaces can be explicitly written.The explicit formulae of the scheme at third order is provided on two-dimensional structured meshes.The computational complexity of the ADER-DG scheme is compared to that of the RKDG scheme.Numerical experiments are also provided to demonstrate the accuracy and efficiency of our scheme. 展开更多
关键词 Hamilton-Jacobi equation ader Discontinuous Galerkin methods Local continuous spacetime Galerkin predictor High order accuracy
原文传递
High Order Accurate Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Non-Conservative Hyperbolic Systems with Stiff Source Terms 被引量:1
11
作者 Walter Boscheri Raphael Loubere 《Communications in Computational Physics》 SCIE 2017年第1期271-312,共42页
In this paper we present a 2D/3D high order accurate finite volume scheme in the context of direct Arbitrary-Lagrangian-Eulerian algorithms for general hyperbolic systems of partial differential equations with non-con... In this paper we present a 2D/3D high order accurate finite volume scheme in the context of direct Arbitrary-Lagrangian-Eulerian algorithms for general hyperbolic systems of partial differential equations with non-conservative products and stiff source terms.This scheme is constructed with a single stencil polynomial reconstruction operator,a one-step space-time ADER integration which is suitably designed for dealing even with stiff sources,a nodal solver with relaxation to determine the mesh motion,a path-conservative integration technique for the treatment of non-conservative products and an a posteriori stabilization procedure derived from the so-called Multidimensional Optimal Order Detection(MOOD)paradigm.In this work we consider the seven equation Baer-Nunziato model of compressible multi-phase flows as a representative model involving non-conservative products as well as relaxation source terms which are allowed to become stiff.The new scheme is validated against a set of test cases on 2D/3D unstructured moving meshes on parallel machines and the high order of accuracy achieved by the method is demonstrated by performing a numerical convergence study.Classical Riemann problems and explosion problems with exact solutions are simulated in 2D and 3D.The overall numerical code is also profiled to provide an estimate of the computational cost required by each component of the whole algorithm. 展开更多
关键词 Direct Arbitrary-Lagrangian-Eulerian a posteriori MOOD stabilization Baer-Nunziato model stiff source terms non-conservative products unstructured mesh ader high order of accuracy in space and time high performance computing(HPC) hyperbolic conservation laws
原文传递
A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws
12
作者 Raphael Loubere Michael Dumbser Steven Diot 《Communications in Computational Physics》 SCIE 2014年第8期718-763,共46页
In this paper,we investigate the coupling of the Multi-dimensional Optimal Order Detection(MOOD)method and the Arbitrary high order DERivatives(ADER)approach in order to design a new high order accurate,robust and com... In this paper,we investigate the coupling of the Multi-dimensional Optimal Order Detection(MOOD)method and the Arbitrary high order DERivatives(ADER)approach in order to design a new high order accurate,robust and computationally efficient Finite Volume(FV)scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions,respectively.The Multi-dimensional Optimal Order Detection(MOOD)method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes.It is an arbitrary high-order accurate Finite Volume scheme in space,using polynomial reconstructions with a posteriori detection and polynomial degree decrementing processes to deal with shock waves and other discontinuities.In the following work,the time discretization is performed with an elegant and efficient one-step ADER procedure.Doing so,we retain the good properties of the MOOD scheme,that is to say the optimal high-order of accuracy is reached on smooth solutions,while spurious oscillations near singularities are prevented.The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D,but it also increases the stability of the overall scheme.A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost,robustness,accuracy and efficiency.The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive(memory and/or CPU time),or because it is more accurate for a given grid resolution.A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws:the Euler equations of compressible gas dynamics,the classical equations of ideal magneto-Hydrodynamics(MHD)and finally the relativistic MHD equations(RMHD),which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation.All tests are run on genuinely unstructured grids composed of simplex elements. 展开更多
关键词 Finite Volume high-order conservation law polynomial reconstruction ader MOOD hyperbolic PDE unstructured meshes finite volume one-step time discretization local continuous space-time Galerkin method WENO Euler equations MHD equations relativistic MHD equations.
原文传递
局部时间步长间断有限元方法求解三维欧拉方程 被引量:2
13
作者 吴迪 蔚喜军 徐云 《计算物理》 EI CSCD 北大核心 2011年第1期1-9,共9页
使用间断有限元方法求解三维流体力学方程.空间剖分采用非结构四面体网格,为了克服显格式在单元网格尺寸差别较大时计算效率低下的问题,在格式中采用局部时间步长技术(LTS),即控制方程在空间、时间上积分得到一种单步格式,既可以局部计... 使用间断有限元方法求解三维流体力学方程.空间剖分采用非结构四面体网格,为了克服显格式在单元网格尺寸差别较大时计算效率低下的问题,在格式中采用局部时间步长技术(LTS),即控制方程在空间、时间上积分得到一种单步格式,既可以局部计算每个单元又避免了Runge-Kutta高精度格式处理三维问题时存储量过大的问题.为了提高流体力学方程计算精度,在计算单元边界的数值流通量时使用任意高阶精度方法(ADER).数值算例表明格式稳定有效. 展开更多
关键词 双曲守恒律方程 间断有限元 局部时间步长法 ader方法
下载PDF
鲍曼不动杆菌RND主动外排泵的表达与耐药性的关系 被引量:4
14
作者 陈娇 刘康 +4 位作者 李剑平 吴秀珍 胡雪飞 陈开森 陈贺 《中国感染控制杂志》 CAS 北大核心 2018年第11期951-957,共7页
目的检测鲍曼不动杆菌耐药结节分化家族(RND)外排系统的分布,探索其表达与耐药性的关系。方法对南昌大学第一附属医院临床标本分离的59株多重耐药鲍曼不动杆菌进行细菌的鉴定与药敏分析,采用PCR技术检测鲍曼不动杆菌中RND主动外排系统... 目的检测鲍曼不动杆菌耐药结节分化家族(RND)外排系统的分布,探索其表达与耐药性的关系。方法对南昌大学第一附属医院临床标本分离的59株多重耐药鲍曼不动杆菌进行细菌的鉴定与药敏分析,采用PCR技术检测鲍曼不动杆菌中RND主动外排系统的分布情况,比较不同耐药表型的鲍曼不动杆菌间外排泵基因的表达情况,分析其表达量与耐药的关系,并对RND外排系统的扩增产物进行测序。结果鲍曼不动杆菌对氨苄西林/舒巴坦、亚胺培南、庆大霉素、环丙沙星、左氧氟沙星耐药率高达93.2%、94.9%、88.1%、96.6%、52.5%。59株鲍曼不动杆菌经外排泵及整合子基因PCR扩增检测,adeR、adeS、adeB、adeJ、adeG基因的携带率分别为81.4%、91.5%、93.2%、100.0%、61.0%。不同菌株外排泵基因的表达均不相同,其中庆大霉素、亚胺培南、氨苄西林/舒巴坦耐药组与非耐药组鲍曼不动杆菌adeB、adeJ基因的表达量相比,差异均有统计学意义(均P<0.05)。adeABC外排泵的调控基因adeR、adeS的碱基序列未出现基因突变或插入序列。结论 RND外排系统在鲍曼不动杆菌中普遍存在,RND外排系统中adeB、adeJ基因的表达水平升高与细菌对庆大霉素、亚胺培南、氨苄西林/舒巴坦的耐药性有关。 展开更多
关键词 鲍曼不动杆菌 耐药性 RND外排系统 ader adeS adeB adeJ adeG
下载PDF
乳酸和乙醇酸共聚物膜的细胞亲和性实验研究 被引量:3
15
作者 李宏卫 张栋华 +2 位作者 祁兵 温玉明 王昌美 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第12期959-961,共3页
目的:制作具有较好亲和性、利于细胞黏附的组织工程支架材料。方法:制作改性后的PLGA膜Ⅰ(乳酸和乙醇酸共聚物膜)、PLGA膜Ⅱ、PLGA膜Ⅲ,分别测定其吸水率、接触角并进行细胞培养及倒置相差显微镜下观察细胞黏附情况。结果:细胞与PLGA膜4... 目的:制作具有较好亲和性、利于细胞黏附的组织工程支架材料。方法:制作改性后的PLGA膜Ⅰ(乳酸和乙醇酸共聚物膜)、PLGA膜Ⅱ、PLGA膜Ⅲ,分别测定其吸水率、接触角并进行细胞培养及倒置相差显微镜下观察细胞黏附情况。结果:细胞与PLGA膜4h时就可以发生黏附,8h时大量细胞贴壁,且细胞分布均匀,伸展良好;24~48h间完成贴壁生长,铺满PLGA膜,4天后细胞生长良好。结论:PLGA膜具有较好的细胞亲和性,它的表面有利于细胞的黏附,是一种较好的组织工程支架材料。 展开更多
关键词 PLGA膜 组织工程 黏附
下载PDF
装载机驾驶舱人机工程改进设计研究 被引量:13
16
作者 尹航 《机械设计》 CSCD 北大核心 2017年第8期120-123,共4页
为改善装载机驾驶环境,减轻驾驶员操作疲劳,提高舒适性,以JACK软件为分析工具,在装备设计过程中模拟驾驶员的工作状态和操作行为,准确识别装载机驾驶舱设计中需改进的人机工程问题。建立了符合中国驾驶员身体数据的虚拟人体模型,对某型... 为改善装载机驾驶环境,减轻驾驶员操作疲劳,提高舒适性,以JACK软件为分析工具,在装备设计过程中模拟驾驶员的工作状态和操作行为,准确识别装载机驾驶舱设计中需改进的人机工程问题。建立了符合中国驾驶员身体数据的虚拟人体模型,对某型装载机驾驶舱内的布置设计在可视性、可触及性及身体姿态舒适性等方面进行人机工程分析和校核,并利用标识驾驶员手、脚可及范围与舒适区域的三维图形工具对装载机驾驶舱进行改进设计。在产品设计过程中进行人机工程虚拟仿真,可有效提高驾驶舱的工效。 展开更多
关键词 人机工程 装载机驾驶舱 JACK 改进设计
下载PDF
中日战争终结处理与美国亚洲政策转变
17
作者 翁有利 《西南师范大学学报(人文社会科学版)》 CSSCI 北大核心 2003年第3期131-135,共5页
国民党政府在战后结束中日战争状态 ,实施对日处置的整个过程中都受到当时美国亚洲政策的影响。政策制定遵循美国意志 ;具体实施随美国亚洲政策的转变而逐渐由减缓到停止 ;最后在法律上放弃对日处置的一切权利 ,在某种程度上也是出于美... 国民党政府在战后结束中日战争状态 ,实施对日处置的整个过程中都受到当时美国亚洲政策的影响。政策制定遵循美国意志 ;具体实施随美国亚洲政策的转变而逐渐由减缓到停止 ;最后在法律上放弃对日处置的一切权利 ,在某种程度上也是出于美国的压力。美国给中日战争终结处理造成严重恶果 ,应负历史责任。 展开更多
关键词 国民党政府 对日处置 美国 亚洲政策
下载PDF
An Approximate Riemann Solver for Advection-Diffusion Based on the Generalized Riemann Problem
18
作者 Steven Jöns Claus-Dieter Munz 《Communications on Applied Mathematics and Computation》 2020年第3期515-539,共25页
We construct an approximate Riemann solver for scalar advection-diffusion equations with piecewise polynomial initial data.The objective is to handle advection and diffusion simultaneously to reduce the inherent numer... We construct an approximate Riemann solver for scalar advection-diffusion equations with piecewise polynomial initial data.The objective is to handle advection and diffusion simultaneously to reduce the inherent numerical diffusion produced by the usual advection flux calculations.The approximate solution is based on the weak formulation of the Riemann problem and is solved within a space-time discontinuous Galerkin approach with two subregions.The novel generalized Riemann solver produces piecewise polynomial solutions of the Riemann problem.In conjunction with a recovery polynomial,the Riemann solver is then applied to define the numerical flux within a finite volume method.Numerical results for a piecewise linear and a piecewise parabolic approximation are shown.These results indicate a reduction in numerical dissipation compared with the conventional separated flux calculation of advection and diffusion.Also,it is shown that using the proposed solver only in the vicinity of discontinuities gives way to an accurate and efficient finite volume scheme. 展开更多
关键词 Generalized Riemann problem ADVECTION-DIFFUSION Discontinuous Galerkin Numerical flux ader Diffusive generalized Riemann problem Space-time solution Recovery method
下载PDF
哈药祛风阿德尔阿斯盘蜜膏质量标准研究
19
作者 汪晶 许欢 +4 位作者 江阿古丽·艾山 李筱婧 陈斌 木拉提·克扎衣别克 黄一平 《中国民族医药杂志》 2019年第10期36-39,共4页
目的:建立哈药祛风阿德尔阿斯盘蜜膏的质量标准,探索蜜膏制剂质量控制方法。方法:采用薄层色谱法对蜜膏中的骆驼蓬草、延胡索、大黄及黄柏进行定性鉴别;采用高效液相色谱法测定蜜膏中延胡索乙素的含量,色谱柱为X-Bridge C18,流动相为乙... 目的:建立哈药祛风阿德尔阿斯盘蜜膏的质量标准,探索蜜膏制剂质量控制方法。方法:采用薄层色谱法对蜜膏中的骆驼蓬草、延胡索、大黄及黄柏进行定性鉴别;采用高效液相色谱法测定蜜膏中延胡索乙素的含量,色谱柱为X-Bridge C18,流动相为乙腈-0.1%磷酸溶液(三乙胺调pH)等度洗脱,流速为1mL/min,柱温为25℃,检测波长为280nm,进样量为10μL。结果:4种药材的TLC供试品色谱与对照品及对照药材在相应的位置上呈现相同斑点或荧光;延胡索乙素在4.4~220μg·mL^-1范围内呈现良好的线性关系(R=0.9992),精密度、稳定性、重复性的RSD均小于3%,平均回收率为98.67%(RSD=2.1%,n=9),三批制剂中延胡索乙素的平均含量为0.0555mg/g。结论:本文建立的质量标准简便、稳定、可靠,为祛风阿德尔阿斯盘蜜膏的质量控制提供了科学依据。 展开更多
关键词 祛风阿德尔阿斯盘 蜜膏 质量标准
下载PDF
企业领导人与企业文化 被引量:2
20
作者 李胜国 《江汉石油职工大学学报》 2007年第5期51-54,共4页
企业文化一定程度上可以说就是企业领导人的文化。企业领导人在企业的不同发展阶段发挥着创建、继承和变革企业文化的决定性作用。企业领导人要发挥好这三种作用,必须解决好两个问题:一是思想上必须要有建立企业文化的冲动;二是方法上... 企业文化一定程度上可以说就是企业领导人的文化。企业领导人在企业的不同发展阶段发挥着创建、继承和变革企业文化的决定性作用。企业领导人要发挥好这三种作用,必须解决好两个问题:一是思想上必须要有建立企业文化的冲动;二是方法上必须要建立企业文化相关的人文思想,并从话语文化、行为文化和思想文化三个方面加以引导,最终形成有特色的企业文化。 展开更多
关键词 企业领导人 企业文化 人文思想 企业领导人文化
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部