The 18 species of bird studied originally are known to belong to muscicapids, robins and sylviids of passerines, but some dis- putations are always present in their classification systems. In this experiment, phylogen...The 18 species of bird studied originally are known to belong to muscicapids, robins and sylviids of passerines, but some dis- putations are always present in their classification systems. In this experiment, phylogenetic relationships of 18 species of passerines were studied using Adenylate Kinase lntron 5 (AKS) sequences and DNA techniques. Through sequences analysis in comparison with each other, phylogenetic tree figures of 18 species of passerines were constructed using Neighbor-Joining (N J) and Maximum-Parsimony (MP) meth- ods . The results showed that sylviids should be listed as an independent family, while robins and flycatchers should be listed into Musci- capidae. Since the phylogenetic relationships between long-tailed tits and old world warblers are closer than that between long-tailed tits and parids, the long-tailed tits should be independent of paridae and be categorized into aegithalidae. Muscicapidae and Paridae are known to be two monophylitic families, but Sylviidae is not a monophyletic group. AK5 sequences had better efficacy in resolving close relationships of interspecies among intrageneric groups.展开更多
BACKGROUND Spermatogonial stem cells(SSCs)are the origin of male spermatogenesis,which can reconstruct germ cell lineage in mice.However,the application of SSCs for male fertility restoration is hindered due to the un...BACKGROUND Spermatogonial stem cells(SSCs)are the origin of male spermatogenesis,which can reconstruct germ cell lineage in mice.However,the application of SSCs for male fertility restoration is hindered due to the unclear mechanisms of proliferation and self-renewal in humans.AIM To investigate the role and mechanism of SPOC domain-containing protein 1(SPOCD1)in human SSC proliferation.METHODS We analyzed publicly available human testis single-cell RNA sequencing(RNAseq)data and found that SPOCD1 is predominantly expressed in SSCs in the early developmental stages.Small interfering RNA was applied to suppress SPOCD1 expression to detect the impacts of SPOCD1 inhibition on SSC proliferation and apoptosis.Subsequently,we explored the target genes of SPOCD1 using RNA-seq and confirmed their role by restoring the expression of the target genes.In addition,we examined SPOCD1 expression in some non-obstructive azoospermia(NOA)patients to explore the correlation between SPOCD1 and NOA.RESULTS The uniform manifold approximation and projection clustering and pseudotime analysis showed that SPOCD1 was highly expressed in the early stages of SSC,and immunohistological results showed that SPOCD1 was mainly localized in glial cell line-derived neurotrophic factor family receptor alpha-1 positive SSCs.SPOCD1 knockdown significantly inhibited cell proliferation and promoted apoptosis.RNA-seq results showed that SPOCD1 knockdown significantly downregulated genes such as adenylate kinase 4(AK4).Overexpression of AK4 in SPOCD1 knockdown cells partially reversed the phenotypic changes,indicating that AK4 is a functional target gene of SPOCD1.In addition,we found a significant downregulation of SPOCD1 expression in some NOA patients,suggesting that the downregulation of SPOCD1 may be relevant for NOA.CONCLUSION Our study broadens the understanding of human SSC fate determination and may offer new theories on the etiology of male infertility.展开更多
The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species.Enzymatic shuttles,particularly adenyl...The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species.Enzymatic shuttles,particularly adenylate kinase(AK)and creatine kinase(CK),are pivotal in the efficient transfer of intracellular ATP,showing distinct tissue-and species-specificity.Here,the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups,of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates.Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort.Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility.Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke(RS)of the axoneme.Examination of various human and mouse sperm samples with substructural damage,including the presence of multiple RS subunits,showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme.Using an ATP probe together with metabolomic analysis,it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme,and were concentrated at sites associated with energy consumption in the flagellum.These findings indicate a novel function for RS beyond its structural role,namely,the regulation of ATP transfer.In conclusion,the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.展开更多
Corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex, can be cumula- tively toxic to hippocampal neurons, the cause of which is not known. The present study determined whether the cytoso...Corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex, can be cumula- tively toxic to hippocampal neurons, the cause of which is not known. The present study determined whether the cytosol adenylate kinase (AK) system long-term exposure to high corticosterone levels. We was involved in the neuronal damage induced by nvestigated the effects of long-term exposure to high corticosterone levels on AK1 activity, AK1 mRNA expression, and energy levels in cultured hippocampal neurons. The results show that long-term exposure to high corticosterone levels induces a reduction of the cultured hippocampal neuron viability, significantly reduces energy levels, and causes a time-dependant re- duction of the AK1 activity. These findings indicate that changes in the AK system might be the mechanism underlying neuronal damage induced by long-term exposure to high corticosterone levels.展开更多
Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surfa...Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-Imediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.展开更多
Binding and releasing ligands are critical for the biological functions of many proteins,so it is important to determine these highly dynamic processes.Although there are experimental techniques to determine the struc...Binding and releasing ligands are critical for the biological functions of many proteins,so it is important to determine these highly dynamic processes.Although there are experimental techniques to determine the structure of a protein-ligand complex,it only provides a static picture of the system.With the rapid increase of computing power and improved algorithms,molecular dynamics(MD)simulations have diverse of superiority in probing the binding and release process.However,it remains a great challenge to overcome the time and length scales when the system becomes large.This work presents an enhanced sampling tool for ligand binding and release,which is based on iterative multiple independent MD simulations guided by contacts formed between the ligand and the protein.From the simulation results on adenylate kinase,we observe the process of ligand binding and release while the conventional MD simulations at the same time scale cannot.展开更多
The functions and activities of proteins are closely related to their structures and dynamics,and their interactions with ligands.Knowledge of the mechanistic events of proteins’conformational transitions and interac...The functions and activities of proteins are closely related to their structures and dynamics,and their interactions with ligands.Knowledge of the mechanistic events of proteins’conformational transitions and interactions with ligands is crucially important to understand the functions and biological activities of proteins and thus to the design of novel inhibitors of the targeted receptor.In this review article,taking two important systems as examples,i.e.,human immunodeficiency virus type 1 protease(HIV-1 PR)and adenylate kinase(AdK),and focusing on the molecular dynamics simulations of the conformational transitions of protein and the protein-ligand association/dissociation,we explain how the conformational transitions of proteins influence the interactions with their ligands,and how the ligands impact the function and dynamics of proteins.These results of structural dynamics of HIV-1 PR and AdK and their interactions with ligands can help to understand the principle of conformational transitions of proteins,or the interactions of ligands to their biological targets,and thus provide meaningful message in chemistry and biology of drug design and discovery.展开更多
文摘The 18 species of bird studied originally are known to belong to muscicapids, robins and sylviids of passerines, but some dis- putations are always present in their classification systems. In this experiment, phylogenetic relationships of 18 species of passerines were studied using Adenylate Kinase lntron 5 (AKS) sequences and DNA techniques. Through sequences analysis in comparison with each other, phylogenetic tree figures of 18 species of passerines were constructed using Neighbor-Joining (N J) and Maximum-Parsimony (MP) meth- ods . The results showed that sylviids should be listed as an independent family, while robins and flycatchers should be listed into Musci- capidae. Since the phylogenetic relationships between long-tailed tits and old world warblers are closer than that between long-tailed tits and parids, the long-tailed tits should be independent of paridae and be categorized into aegithalidae. Muscicapidae and Paridae are known to be two monophylitic families, but Sylviidae is not a monophyletic group. AK5 sequences had better efficacy in resolving close relationships of interspecies among intrageneric groups.
基金the National Natural Science Foundation for Young Scholars of China,No.82201771National Natural Science Foundation of China,No.32270912+2 种基金Natural Science Foundation of Changsha,No.kq2202491Research Grant of CITIC-Xiangya,No.YNXM202109 and No.YNXM202115Hunan Provincial Grant for Innovative Province Construction,No.2019SK4012。
文摘BACKGROUND Spermatogonial stem cells(SSCs)are the origin of male spermatogenesis,which can reconstruct germ cell lineage in mice.However,the application of SSCs for male fertility restoration is hindered due to the unclear mechanisms of proliferation and self-renewal in humans.AIM To investigate the role and mechanism of SPOC domain-containing protein 1(SPOCD1)in human SSC proliferation.METHODS We analyzed publicly available human testis single-cell RNA sequencing(RNAseq)data and found that SPOCD1 is predominantly expressed in SSCs in the early developmental stages.Small interfering RNA was applied to suppress SPOCD1 expression to detect the impacts of SPOCD1 inhibition on SSC proliferation and apoptosis.Subsequently,we explored the target genes of SPOCD1 using RNA-seq and confirmed their role by restoring the expression of the target genes.In addition,we examined SPOCD1 expression in some non-obstructive azoospermia(NOA)patients to explore the correlation between SPOCD1 and NOA.RESULTS The uniform manifold approximation and projection clustering and pseudotime analysis showed that SPOCD1 was highly expressed in the early stages of SSC,and immunohistological results showed that SPOCD1 was mainly localized in glial cell line-derived neurotrophic factor family receptor alpha-1 positive SSCs.SPOCD1 knockdown significantly inhibited cell proliferation and promoted apoptosis.RNA-seq results showed that SPOCD1 knockdown significantly downregulated genes such as adenylate kinase 4(AK4).Overexpression of AK4 in SPOCD1 knockdown cells partially reversed the phenotypic changes,indicating that AK4 is a functional target gene of SPOCD1.In addition,we found a significant downregulation of SPOCD1 expression in some NOA patients,suggesting that the downregulation of SPOCD1 may be relevant for NOA.CONCLUSION Our study broadens the understanding of human SSC fate determination and may offer new theories on the etiology of male infertility.
基金supported by National Key Research and Development Program of China(2022YFC2702702,2021YFC2700901)the National Natural Science Foundation of China(81971441,82171607,32000584)+3 种基金the University Outstanding Young Talents Support Program(gxyq2021174)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2019PT310002)Anhui Provincial Natural Science Foundation(2208085Y31)the Natural Science Foundation of Jiangsu Province(BK20230004).
文摘The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species.Enzymatic shuttles,particularly adenylate kinase(AK)and creatine kinase(CK),are pivotal in the efficient transfer of intracellular ATP,showing distinct tissue-and species-specificity.Here,the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups,of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates.Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort.Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility.Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke(RS)of the axoneme.Examination of various human and mouse sperm samples with substructural damage,including the presence of multiple RS subunits,showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme.Using an ATP probe together with metabolomic analysis,it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme,and were concentrated at sites associated with energy consumption in the flagellum.These findings indicate a novel function for RS beyond its structural role,namely,the regulation of ATP transfer.In conclusion,the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.
基金Supported by the National Natural Science Foundation of China (No. 90713043)the Specialized Research Fund for Doctoral Program of Higher Education of MOE, P.R.C. (No. 20060003072)+1 种基金the Key Technologies Research and Development Program of the 11th Five-Year Plan of China (No. 2006BAIO8B03-09)the Fund for Basic Research from the Nanjing University of Traditional Chinese Medicine (No. 08XJC02)
文摘Corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex, can be cumula- tively toxic to hippocampal neurons, the cause of which is not known. The present study determined whether the cytosol adenylate kinase (AK) system long-term exposure to high corticosterone levels. We was involved in the neuronal damage induced by nvestigated the effects of long-term exposure to high corticosterone levels on AK1 activity, AK1 mRNA expression, and energy levels in cultured hippocampal neurons. The results show that long-term exposure to high corticosterone levels induces a reduction of the cultured hippocampal neuron viability, significantly reduces energy levels, and causes a time-dependant re- duction of the AK1 activity. These findings indicate that changes in the AK system might be the mechanism underlying neuronal damage induced by long-term exposure to high corticosterone levels.
基金Supported by An INSERM Avenir Grant (Martinez LO)ANR (Martinez LO and Lichtenstein L, #GENO 102 01)+1 种基金the French Association pour la Recherche sur le Cancer (Vantourout P and Champagne E, #3711-3913-4847)An INSERM young scientist fellowship (Pons V)
文摘Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-Imediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.
基金supported by the National Natural Science Foundation of China(No.91953101)the Strategic Priority Research Program of the Chinese Academy of Science(XDB37040202)the Hefei National Science Center Pilot Project Funds,and the New Concept Medical Research Fund of USTC。
文摘Binding and releasing ligands are critical for the biological functions of many proteins,so it is important to determine these highly dynamic processes.Although there are experimental techniques to determine the structure of a protein-ligand complex,it only provides a static picture of the system.With the rapid increase of computing power and improved algorithms,molecular dynamics(MD)simulations have diverse of superiority in probing the binding and release process.However,it remains a great challenge to overcome the time and length scales when the system becomes large.This work presents an enhanced sampling tool for ligand binding and release,which is based on iterative multiple independent MD simulations guided by contacts formed between the ligand and the protein.From the simulation results on adenylate kinase,we observe the process of ligand binding and release while the conventional MD simulations at the same time scale cannot.
基金supported by the Natural Science Foundation of China(Grants No.11932017,11772055,11772054,11221202,11202026,and 11532009)the Fundamental Research Funds for the Central Universities(Grant No.2019QNA4060).
文摘The functions and activities of proteins are closely related to their structures and dynamics,and their interactions with ligands.Knowledge of the mechanistic events of proteins’conformational transitions and interactions with ligands is crucially important to understand the functions and biological activities of proteins and thus to the design of novel inhibitors of the targeted receptor.In this review article,taking two important systems as examples,i.e.,human immunodeficiency virus type 1 protease(HIV-1 PR)and adenylate kinase(AdK),and focusing on the molecular dynamics simulations of the conformational transitions of protein and the protein-ligand association/dissociation,we explain how the conformational transitions of proteins influence the interactions with their ligands,and how the ligands impact the function and dynamics of proteins.These results of structural dynamics of HIV-1 PR and AdK and their interactions with ligands can help to understand the principle of conformational transitions of proteins,or the interactions of ligands to their biological targets,and thus provide meaningful message in chemistry and biology of drug design and discovery.