期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Mechanical Properties of Living Adherent Cells :Relationship with Structure and Function
1
作者 R. FODIL S. Féréol +3 位作者 E. PLANUS V.M. LAURENT B. LOUIS D. ISABEY 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期9-10,共2页
关键词 Relationship with Structure and Function Mechanical Properties of Living adherent cells PBM cell
下载PDF
Sensitivity and specificity of different staining methods to monitor apoptosis induced by oxidative stress in adherent cells 被引量:4
2
作者 赵进顺 Alexandra Schmid-Kotsas +2 位作者 Hans-Juergen Gross Adolf Gruenert Max G. Bachem 《Chinese Medical Journal》 SCIE CAS CSCD 2003年第12期1923-1929,共7页
Objective To study the sensitivity and specificity of different staining methods to monitor apoptosis induced by oxidative stress in adherent cells.Methods Sensitivity and specificity of several common methods for apo... Objective To study the sensitivity and specificity of different staining methods to monitor apoptosis induced by oxidative stress in adherent cells.Methods Sensitivity and specificity of several common methods for apoptosis determination were evaluated (Apo2.7-expression, Annexin V-binding, TUNEL-reaction, poly-(ADP-ribose)-polymerase-(PARP) cleavage and single-stranded-DNA (ssDNA) staining). Apoptosis was induced by oxidative stress generated by hydrogen peroxide in 3 cultured cells types growing as adherent monolayer (MiaPaCa-2, Hep-G2 and human skin fibroblasts), necrosis was induced by depletion of cellular ATP using sodium azide. Cells positively stained by the respective apoptosis assay were quantified and alterations of cell morphology were monitored by fluorescence microscopy. The date was analyzed by one-way analysis of variance and significance test of correlation coefficient.Results One hour after apoptosis induction significant cell fractions were positively stained for ssDNA (33% with MiaPaCa-2 cells, 35% with Hep-G2 cells, 56% with human skin fibroblasts). PARP-cleavage was less sensitive compared to the ssDNA-staining. Apo2.7-expression, Annexin V-binding and TUNEL-reaction were not applicable to detect early apoptosis induced by oxidative stress (below 2 hours), but were efficiently monitoring late apoptosis. Specificity of ssDNA-staining was complete with each cell type even 4 hs after induction of necrosis by the highest sodium azide concentration. In contrast, the same experimental conditions resulted in 50%-90% positively stained necrotic cells by using Apo2.7-expression, TUNEL-reaction or AnnexinV-binding. Surprisingly, specificity of PARP-cleavage was highly depending on the respective cell type.Conclusions Our study prove that among the five methods investigated only ssDNA-staining allowed to completely differentiate apoptosis from necrosis, and is thus suitable to reliably detect early as well as late apoptosis. Therefore, the ssDNA-staining may be used as reference method to clearly identify apoptosis induced by oxidative stress in adherent cells. The TUNEL-reaction, annexin-V-binding and Apo-2.7-expression may be used to quantify the number of apoptotic and necrotic cells especially at later stages but without discrimination of apoptosis and primary or secondary necrosis. 展开更多
关键词 APOPTOSIS staining method sensitivity SPECIFICITY oxidative stress adherent cell
原文传递
Minimally manipulated autologous adherent bone marrow cells (ABMCs):a promising cell therapy of spinal cord injury 被引量:3
3
作者 Kamana Misra Hatem E.Sabaawy 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1058-1060,共3页
Spinal cord injury(SCI)is a devastating ailment that results in drastic life style alterations for the patients and their family members(Mc Donald and Sadowsky,2002).Damage post injury causes necrosis,edema,hemorr... Spinal cord injury(SCI)is a devastating ailment that results in drastic life style alterations for the patients and their family members(Mc Donald and Sadowsky,2002).Damage post injury causes necrosis,edema,hemorrhage and vasospasm.Post injury,secondary damage is caused by ischemia, 展开更多
关键词 BONE cell Minimally manipulated autologous adherent bone marrow cells a promising cell therapy of spinal cord injury ABMCs MSCS
下载PDF
THE EFFECT OF PHENYLACETATE ON THE EXPANSION AND CYTOTOXIC ACTIVITY OF ADHERENT LAK CELLS FROM PATIENTS WITH HEPATOCELLULAR CARCINOMA
4
作者 郑宁 叶胜龙 +2 位作者 孙瑞霞 赵燕 汤钊猷 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2002年第1期1-4,共4页
Objective: To improve the preparation of adherent lymphokine-activated killer (A-LAK) cells and study the synergistic anti-tumor effect of phenylacetate (PA) and A-LAK cells. Methods: A-LAK cells were obtained from pe... Objective: To improve the preparation of adherent lymphokine-activated killer (A-LAK) cells and study the synergistic anti-tumor effect of phenylacetate (PA) and A-LAK cells. Methods: A-LAK cells were obtained from peripheral blood mononuclear cells (PBMC) of patients with hepatocellular carcinoma (HCC) by using L-phenylalanine methyl ester (PME) to deplete immunosuppressive monocytes. The proliferation of SMMC7721 cell line treated with PA was studied. A-LAK cells were treated with the supernatant of SMMC7721 cells which had been pretreated with PA and the changes of the proliferation and anti-tumor activity of A-LAK cells were investigated. Results: The expansion of A-LAK cells was significantly higher than that of non-adherent LAK (NA-LAK) cells as well as regular LAK cells. The growth of SMMC7721 cells was significantly suppressed by PA. The supernatant of cultured tumor cells intensively suppressed the proliferation and cytotoxicity of A-LAK cells, but the suppressive effect of supernatant treated with PA previously was decreased. Conclusion: A-LAK cells could be simply prepared by using PME, and showed a synergistic anti-tumor effect with the combination of PA. 展开更多
关键词 adherent lymphokine-activated killer cells PHENYLACETATE hepatocellular carcinoma phenylalanine methyl ester
下载PDF
Self-assembled IKVAV Peptide Nanofibers Promote Adherence of PC12 Cells 被引量:1
5
作者 吴永超 郑启新 +3 位作者 杜靖远 宋玉林 吴斌 郭晓东 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第5期594-596,共3页
Lack of biocompatibility and bioactivity is a big problem for the synthetic materials that have been generated for neural tissue engineering. To get around the problem and generate better scaffold for neural tissue re... Lack of biocompatibility and bioactivity is a big problem for the synthetic materials that have been generated for neural tissue engineering. To get around the problem and generate better scaffold for neural tissue repair, we intended to generate nano-fibers by self-assembly of polypeptide IKVAV. Bioactive IKVAV Peptide-Amphiphile (IKVAV-PA) was first synthesized and purified, the property of which was analyzed and determined by high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Then, by addition of hydrogen chloride (HC1), self-assembly of IKVAV-PA was induced in vitro and nano-fibers formed as shown by transmission electron microscopy (TEM). The effect of IKVAV nanofibers on adherence of PCI2 cells was assayed in cell culture and the results showed that the rates of adherence of PC12 increased significantly when the density of IKVAV was within a certain range (0.58 μg/cm^2 to 15.6 μg/cm^2). However, its effect on the rates of adherence did not significantly alter with time, whether after 1 hour or 3 hours of culture. In general, we showed that IKVAV-PA can successfully self-assemble to form nanofiber, and promote rapid and stable adherence of PC12 cells, and the effect of the self-assembled IKVAV to promote PCI2 cells adherence is dosage-dependent within a certain range of densities. 展开更多
关键词 neural tissue engineering PEPTIDE self-assembly NANOFIBER cell adherence
下载PDF
Low intensity mechanical signals promote proliferation in a cell-specific manner:Tailoring a non-drug strategy to enhance biomanufacturing yields
6
作者 M.Ete Chan Christopher Ashdown +9 位作者 Lia Strait Sishir Pasumarthy Abdullah Hassan Steven Crimarco Chanpreet Singh Vihitaben S.Patel Gabriel Pagnotti Omor Khan Gunes Uzer Clinton T.Rubin 《Mechanobiology in Medicine》 2024年第4期59-68,共10页
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics,tissue engineering constructs,vaccines,and a vast range of agricultural and industrial products.With the escalating demand for these ... Biomanufacturing relies on living cells to produce biotechnology-based therapeutics,tissue engineering constructs,vaccines,and a vast range of agricultural and industrial products.With the escalating demand for these bio-based products,any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline.While these goals are primarily achieved using biological or chemical strategies,harnessing cell mechanosensitivity represents a promising–albeit less studied–physical pathway to promote bioprocessing endpoints,yet identifying which mechanical parameters influence cell activities has remained elusive.We tested the hypothesis that mechanical signals,delivered non-invasively using low-intensity vibration(LIV;<1 g,10–500 Hz),will enhance cell expansion,and determined that any unique signal configuration was not equally influential across a range of cell types.Varying frequency,intensity,duration,refractory period,and daily doses of LIV increased proliferation in Chinese Hamster Ovary(CHO)-adherent cells(t79%in 96 hr)using a particular set of LIV parameters(0.2 g,500 Hz,330 min/d,2 hr refractory period),yet this same mechanical input suppressed proliferation in CHO-suspension cells(13%).Another set of LIV parameters(30 Hz,0.7 g,260 min/d,2 hr refractory period)however,were able to increase the proliferation of CHO-suspension cells by 210%and T-cells by 20.3%.Importantly,we also reported that T-cell response to LIV was in-part dependent upon AKT phosphorylation,as inhibiting AKT phosphorylation reduced the proliferative effect of LIV by over 60%,suggesting that suspension cells utilize mechanism(s)similar to adherent cells to sense specific LIV signals.Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids(>90%),and LIV effectively scaled up to T75 flasks.Ultimately,when LIV is tailored to the target cell population,it's highly efficient transmission across media represents a means to noninvasively augment biomanufacturing endpoints for both adherent and suspended cells,and holds immediate applications,ranging from small-scale,patient-specific personalized medicine to large-scale commercial biocentric production challenges. 展开更多
关键词 Biomanufacturing cell proliferation Mechanical stimulation Biomechanics adherent cells Suspension cells Stem cells Vibration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部