期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow 被引量:2
1
作者 Xiao-Bo Gong Yu-Qing Li +4 位作者 Quan-Chao Gao Bin-Bin Cheng Bao-Rong Shen Zhi-Qiang Yan Zong-Lai Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期1071-1080,共10页
The adhesion of endothelial progenitor cells(EPCs) on endothelial cells(ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseas... The adhesion of endothelial progenitor cells(EPCs) on endothelial cells(ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases.Here,the rolling and adhesion behavior of EPCs on ECs was studied numerically.A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow.The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model.The effect of tumor necrosis factor alpha(TNF-α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally.A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs.Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiff-ness of the cell and shear rate of the flow.It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered.Experimental results demonstrate that TNF-α enhanced the expressions of VCAM,ICAM,P-selectin and E-selectin in ECs,which supports the numerical results that the rolling velocity of EPC on TNF-α treated EC substrate decreases obviously compared with its velocity on the untreated one.It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell,an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates. 展开更多
关键词 Endothelial progenitor cell Endothelial cell Cell adhesion. Flow chamber. Immersed boundary method
下载PDF
Single-and two-phase flow model in low-permeability reservoir 被引量:4
2
作者 Song Fuquan Song Xingxing +1 位作者 Wang Yong Sun Yeheng 《Petroleum》 CSCD 2019年第2期183-190,共8页
In petroleum development,low-permeability reservoir means having permeability of porous media lower than 50 micro-Darcy.The mathematical model of liquid flow in low-permeability reservoirs has been difficult to descri... In petroleum development,low-permeability reservoir means having permeability of porous media lower than 50 micro-Darcy.The mathematical model of liquid flow in low-permeability reservoirs has been difficult to describe for a long time,and an ideal model has not been available until now because of the threshold pressure gradient.With the boundary adhesion layer model of a micro-channel as basis,a new liquid flow model was derived for low-permeability reservoirs in this study.The no-movement liquid layer close to the solid surface was defined as the boundary adhesion layer regarded as the negative slip length.Using the exponential function of the boundary stick layer to the pressure drop gradient,the formulae of the liquid velocity and flow rate of a round channel were derived.The liquid flows model in low permeability reservoirs was then obtained.Finally,the flow model was tested by examples,and applications to a low-permeability reservoir were demonstrated.The analysis results show that the new non-linear model of liquid flows exhibits clear physical definition,and can be easily used to describe liquid flows in low-permeability media. 展开更多
关键词 Low-permeability reservoirs Non-linear flow boundary adhesion layer Model of liquid flows
原文传递
Numerical simulation of the sticking process of glass-microparticles to a fiat wall to represent pollutant-particles treatment in a multi-channel cyclone 被引量:1
3
作者 Raimondas Jasevicius Harald Kruggel-Emden Pranas Baltrenas 《Particuology》 SCIE EI CAS CSCD 2017年第3期112-131,共20页
Ultrafine particles are dangerous to human health and are usually difficult to separate from airflow because of their low inertia, which helps them to stick easily to surfaces because of adhesive forces. This characte... Ultrafine particles are dangerous to human health and are usually difficult to separate from airflow because of their low inertia, which helps them to stick easily to surfaces because of adhesive forces. This characteristic provides opportunities for adhesive ultrafine particle separation by designing air-cleaning devices that exploit the sticking ability. To understand governing effects in such air-cleaning devices, which can be designed as multi-channel cyclones, the sticking of adhesive spherical glass particles under oblique impact has been investigated numerically by using the discrete element method. An adhesive dissipative contact model was applied by implementing different interaction forces for various-sized ultraflne pollutant particles. Normal loading is represented by the elastic Hertz contact model, whereas viscous damping is described by the modified nonlinear Tsuji model. The influence of deformation- dependent adhesive forces for a range of ultrafine particle sizes is illustrated during the sticking process. Dissipative oscillations during the sticking process were observed because of the influence of viscous damping forces. 展开更多
关键词 adhesion Discrete element method Microparticles Multi-channel cyclone Sticking process boundary layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部