Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesio...Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
文摘Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.