The construction of an automated adiabatic calorimeter for heat capacity measurement ofsolids in the temperature range of 25- 90K is described in detail. The sample vessel of thecalorimeter has thin radial vanes which...The construction of an automated adiabatic calorimeter for heat capacity measurement ofsolids in the temperature range of 25- 90K is described in detail. The sample vessel of thecalorimeter has thin radial vanes which make no contact with its inner wall and are distrib-uted evenly, thus greatly improving the internal thermal equilibration of the vessel. Theprecision of temperature control for the adiabatic shields and electrical leads of the calori-metric system are heightened to a great extent by using the high precision ACD- 79 modeladiabatic controller specially developed by us for this purpose. Measurements of the heatcapacities of high purity α-Al_2O_3, one of the internationally-accepted standard referencematerials, agree with those of the National Bureau of Standards (NBS), USA within ±0.3%,demonstrating the reliability of this apparatus.展开更多
A novel compound-monohydrated zinc nicotinate was prepared via room temperature solid phase synthesis and ball grinding.FTIR,chemical and elemental analyses and X-ray powder diffraction technique were applied to chara...A novel compound-monohydrated zinc nicotinate was prepared via room temperature solid phase synthesis and ball grinding.FTIR,chemical and elemental analyses and X-ray powder diffraction technique were applied to characterizing the structure and composition of the complex.Low-temperature heat capacities of the solid coordination compound were measured by a precision automated adiabatic calorimeter over a temperature range from 77 to 400 K.A solid-solid phase transition process occurred in a temperature range of 321―342 K inferred according to the heat capacity curve,and the peak temperature,molar enthalpy and entropy of the phase transition of monohydrated zinc nicotinate were determined to be Ttrs=(340.584±0.829) K,ΔtrsHm=(12.682±0.041) kJ/mol and ΔtrsSm=(37.235±0.101) KJ/mol).The experimental values of the molar heat capacities in the temperature regions of 77―321 K and 342―400 K were,respectively,fitted to two polynomial equations.In addition,the polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K.展开更多
The heat capacity of 2- chloro- 6- (trichloromethyl)pyridine has heen measured with anadiabatic calorimeter in the range from 13 to 316K. There is no indication of any phasetransition or thermal anomaly in this temper...The heat capacity of 2- chloro- 6- (trichloromethyl)pyridine has heen measured with anadiabatic calorimeter in the range from 13 to 316K. There is no indication of any phasetransition or thermal anomaly in this temperature region for the present compound. Theresults have been compared with those reported in [1] in the overlapping temperaturerange. The experimental heat capacity data have been fitted to a smoothed curve by the aidof the effective frequency distribution method, and the heat capacities below 13K have beenobtained by extrapolating the fitting curve down to 0K. The standard molar thermodynamicfunctions between 0 and 400 K have been derived by combining the present heat capacitymeasurements with the previous ones. The values of C_p^o (T), S^o(T) - S^o(0), [H^o(T) -H^o(0)]/T, and - [G^o(T) - H^o(0)]/T at T = 298.15 K are 189.35, 244.60, 112 .45 and 132.15J·K^(-1)·mol^(-1), respectively.展开更多
The heat capacities of La(NCS)_3. 7H_2O and Ce(NCS)_3. 7H_2O have been measured from 13 to 300K with a fully-automated adiabatic calorimeter. The construction and procedures of the calorimetric system are described in...The heat capacities of La(NCS)_3. 7H_2O and Ce(NCS)_3. 7H_2O have been measured from 13 to 300K with a fully-automated adiabatic calorimeter. The construction and procedures of the calorimetric system are described in detail. No obvious thermal anomaly was observed for both compounds in the experimental temperature range. The polynomial equations for calculating the heat capacity values of the two compounds in the range 13—300K were obtained by the least-squares fitting based on the experimental C_p data. The C_p values below 13K were estimated by using the Debye and Einstein heat Capacity functions. The standard molar thermodynamic functions were calculated from 0 to 300K. Gibbs energies of formation were also calculated.展开更多
文摘The construction of an automated adiabatic calorimeter for heat capacity measurement ofsolids in the temperature range of 25- 90K is described in detail. The sample vessel of thecalorimeter has thin radial vanes which make no contact with its inner wall and are distrib-uted evenly, thus greatly improving the internal thermal equilibration of the vessel. Theprecision of temperature control for the adiabatic shields and electrical leads of the calori-metric system are heightened to a great extent by using the high precision ACD- 79 modeladiabatic controller specially developed by us for this purpose. Measurements of the heatcapacities of high purity α-Al_2O_3, one of the internationally-accepted standard referencematerials, agree with those of the National Bureau of Standards (NBS), USA within ±0.3%,demonstrating the reliability of this apparatus.
基金Supported by the National Natural Science Foundation of China(No.20673050)Key Project of Science Foundation from Shaanxi Educational College of China(No.08KJ017)
文摘A novel compound-monohydrated zinc nicotinate was prepared via room temperature solid phase synthesis and ball grinding.FTIR,chemical and elemental analyses and X-ray powder diffraction technique were applied to characterizing the structure and composition of the complex.Low-temperature heat capacities of the solid coordination compound were measured by a precision automated adiabatic calorimeter over a temperature range from 77 to 400 K.A solid-solid phase transition process occurred in a temperature range of 321―342 K inferred according to the heat capacity curve,and the peak temperature,molar enthalpy and entropy of the phase transition of monohydrated zinc nicotinate were determined to be Ttrs=(340.584±0.829) K,ΔtrsHm=(12.682±0.041) kJ/mol and ΔtrsSm=(37.235±0.101) KJ/mol).The experimental values of the molar heat capacities in the temperature regions of 77―321 K and 342―400 K were,respectively,fitted to two polynomial equations.In addition,the polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K.
文摘The heat capacity of 2- chloro- 6- (trichloromethyl)pyridine has heen measured with anadiabatic calorimeter in the range from 13 to 316K. There is no indication of any phasetransition or thermal anomaly in this temperature region for the present compound. Theresults have been compared with those reported in [1] in the overlapping temperaturerange. The experimental heat capacity data have been fitted to a smoothed curve by the aidof the effective frequency distribution method, and the heat capacities below 13K have beenobtained by extrapolating the fitting curve down to 0K. The standard molar thermodynamicfunctions between 0 and 400 K have been derived by combining the present heat capacitymeasurements with the previous ones. The values of C_p^o (T), S^o(T) - S^o(0), [H^o(T) -H^o(0)]/T, and - [G^o(T) - H^o(0)]/T at T = 298.15 K are 189.35, 244.60, 112 .45 and 132.15J·K^(-1)·mol^(-1), respectively.
基金Contribution No. 49 from the Microcalorimetry Research Center. Project supported by the National Natural Science Foundation of China.
文摘The heat capacities of La(NCS)_3. 7H_2O and Ce(NCS)_3. 7H_2O have been measured from 13 to 300K with a fully-automated adiabatic calorimeter. The construction and procedures of the calorimetric system are described in detail. No obvious thermal anomaly was observed for both compounds in the experimental temperature range. The polynomial equations for calculating the heat capacity values of the two compounds in the range 13—300K were obtained by the least-squares fitting based on the experimental C_p data. The C_p values below 13K were estimated by using the Debye and Einstein heat Capacity functions. The standard molar thermodynamic functions were calculated from 0 to 300K. Gibbs energies of formation were also calculated.