期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Response Characteristics and Adiabatic Heating during High Strain Rate for TRIP Steel and DP Steel 被引量:2
1
作者 Yi GAO Chao XU +2 位作者 Zhong-ping HE Yan-lin HE Lin LI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第1期48-54,共7页
By using a static and high-speed material testing machine, tensile deformation behaviors of two kinds of Si- Mn TRIP (transformation induced plasticity) steels and DP (dual phase) steel were studied in a large ran... By using a static and high-speed material testing machine, tensile deformation behaviors of two kinds of Si- Mn TRIP (transformation induced plasticity) steels and DP (dual phase) steel were studied in a large range of strain rates (0.001-2000 s 1). Temperature variation during adiabatic heating and the amount of retained austenite at fracture were measured by an infrared thermometer and an Xray stress analyser, respectively. The microstructure of steels was observed by optical microscopy (OM) and scanning electron microscopy (SEM) before and after tensile test. It was found from the experimental results that the tensile strength of these steels increased, and the fracture elonga- tion firstly decreased and subsequently increased, as the strain rate increased in the range "of 0.1 - 2000 s -1. The temperature raised during adiabatic heating of TRIP steel was in the range of 100- 300℃, while that of the DP steel was in the range of 100-220℃ . The temperature rise of these steels increased with increasing the strain rate, as well as the amount of the transformed retained austenite in TRIP steels. It was confirmed that austenite to martensite transformation is not suppressed by adiabatic heating. 展开更多
关键词 strain rate TRIP steel adiabatic heating retained austenite
原文传递
Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model 被引量:7
2
作者 Yu Zhuang Linlin Liu +1 位作者 Qilei Liu Jian Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1052-1060,共9页
Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy effic... Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 Work exchange network Transshipment model adiabatic process Trade-off between work and heat Economic analysis
下载PDF
Synthesis and compressive fracture behavior of a CuZr-based bulk amorphous alloy with Ti addition
3
作者 陈鼎 董建峰 马国芝 《Journal of Central South University》 SCIE EI CAS 2013年第5期1137-1141,共5页
Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal charac... Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal characteristics were analyzed by XRD and DSC, and the fracture surface morphology was examined by SEM. The glassy alloy with 4 mm in diameter shows an high fracture strength of 1 960 MPa, with an improvement of about 20% compared to the ultimate compression fracture strength of the Cu46Zr46A18 BMG, which suggests that the Ti addition improves the compression fracture strength. The different degrees of the adiabatic heating induce four types of fracture features: a vein-like structure, an elongated and striated vein pattern, melting and smooth regions. The elongated and striated vein patterns as well as the melting region show that enormous strain energy is released, which causes significant adiabatic heating. Furthernaore, many micro-cracks observed in the smooth region are caused by the strong shear force. In addition, the strong shear force leads to many shear bands as well as the melting in the lateral surface. 展开更多
关键词 Cu-Zr-Ti-A1 bulk metallic glass compression fracture behavior fracture morphology adiabatic heating
下载PDF
Microstructure Evolution and Strain-Dependent Constitutive Modeling to Predict the Flow Behavior of 20Cr–24Ni–6Mo Super-Austenitic Stainless Steel During Hot Deformation 被引量:1
4
作者 Yan-Sen Hao Wan-Chun Liu Zhen-Yu Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第4期401-414,共14页
Hot compression tests were carried out with specimens of 20Cr-24Ni-6Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s^-1 in the temperature range from 950 to 1150 ℃,and flow behavior was analyzed.M... Hot compression tests were carried out with specimens of 20Cr-24Ni-6Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s^-1 in the temperature range from 950 to 1150 ℃,and flow behavior was analyzed.Microstructure analysis indicated that dynamic recrystallization(DRX)behavior was more sensitive to the temperature than strain rate,and full DRX was obtained when the specimen deformed at 1150℃.When the temperature reduced to 1050 ℃,full DRX was completed at the highest strain rate 10 s-l rather than at the lowest strain rate 0.01 s-1 because the adiabatic heating was pronounced at higher strain rate.In addition,flow behavior reflected in flow curves was inconsistent with the actual microstructural evolution during hot deformation,especially at higher strain rates and lower temperatures.Therefore,flow curves were revised in consideration of the effects of adiabatic heating and friction during hot deformation.The results showed that adiabatic heating became greater with the increase of strain level,strain rate and the decrease of temperature,while the frictional effect cannot be neglected at high strain level.Moreover,based on the revised flow curves,strain-dependent constitutive modeling was developed and verified by comparing the predicted data with the experimental data and the modified data.The result suggested that the developed constitutive modeling can more adequately predict the flow behavior reflected by corrected flow curves than that reflected by experimental flow curves,even though some difference existed at 950℃ and 0.01 s^-1.The main reason was that plenty of precipitates generated at this deformation condition and affected the DRX behavior and deformation behavior,eventually resulted in dramatic increase of deformation resistance. 展开更多
关键词 Super-austenitic stainless steel Hot compression adiabatic heating Constitutive modeling Microstructure evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部