Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabati...Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.展开更多
The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reve...The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reversible and also irreversible phenomena, irreversibility being common or realistic. It previously exposed points tricky to grasp, as the sign of the work exchange, the adiabatic expansion in vacuum (free expansion) or the transfer of heat between two bodies at the same temperature (isothermal transfer). After having slightly modified the concepts of heat transfer (each body produces heat according to its own temperature) and work (distinguishing external pressure from internal pressure), the previous points are more easily explained. At last, an engine efficiency in case of irreversible transfer is proposed. This paper is focused on the form of thermodynamics, on “explanations”;it does not question on “results” (except the irreversible free expansion of 1845...) which remain unchanged.展开更多
详细阐释了对流有效位能(convective available potential energy,CAPE)的本质;提出了CAPE新的计算公式;简要介绍了与CAPE计算有关的物理过程和一些新的物理量。结合实例,用新的公式和目前通用的公式,对CAPE和对流抑制能量(convective i...详细阐释了对流有效位能(convective available potential energy,CAPE)的本质;提出了CAPE新的计算公式;简要介绍了与CAPE计算有关的物理过程和一些新的物理量。结合实例,用新的公式和目前通用的公式,对CAPE和对流抑制能量(convective inhibition,CIN)分三种情形进行对比计算:1)可逆湿绝热过程;2)假绝热过程;3)等假相当位温过程。计算结果表明,假绝热过程比可逆湿绝热过程CAPE新算法明显偏高、CIN明显偏低;MICAPS默认方法与等假相当位温过程计算结果大体相近。展开更多
基金the National Natural Science Fourdation of China under Grant Nos.40375016 , 40428002 InnovationProject of the Chinese Academy of Sciences under Grant No.KZCX-SW-213.
文摘Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.
文摘The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reversible and also irreversible phenomena, irreversibility being common or realistic. It previously exposed points tricky to grasp, as the sign of the work exchange, the adiabatic expansion in vacuum (free expansion) or the transfer of heat between two bodies at the same temperature (isothermal transfer). After having slightly modified the concepts of heat transfer (each body produces heat according to its own temperature) and work (distinguishing external pressure from internal pressure), the previous points are more easily explained. At last, an engine efficiency in case of irreversible transfer is proposed. This paper is focused on the form of thermodynamics, on “explanations”;it does not question on “results” (except the irreversible free expansion of 1845...) which remain unchanged.
文摘详细阐释了对流有效位能(convective available potential energy,CAPE)的本质;提出了CAPE新的计算公式;简要介绍了与CAPE计算有关的物理过程和一些新的物理量。结合实例,用新的公式和目前通用的公式,对CAPE和对流抑制能量(convective inhibition,CIN)分三种情形进行对比计算:1)可逆湿绝热过程;2)假绝热过程;3)等假相当位温过程。计算结果表明,假绝热过程比可逆湿绝热过程CAPE新算法明显偏高、CIN明显偏低;MICAPS默认方法与等假相当位温过程计算结果大体相近。