The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this w...The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this work aimed to study the effect of adding nanocellulose (nCE) with 1, 3, and 5 wt.% on poly(butylene adipate-co-butylene terephthalate) (PBAT). Thermal, structural, relaxometric, and rheological assessments were carried out. Quantitative evaluation of PBAT copolymer by high field NMR revealed 56.4 and 43.6 m.% of the butylene adipate and butylene terephthalate segments, respectively. WAXD measurement on the deconvoluted diffraction patterns identified that nCE was a mixing of Cellulose I and Cellulose II polymorph structures. At any composition, nanocellulose interfered with the PBAT crystallisation process. Also, a series of new PBAT crystallographic planes appeared as a function of nanocellulose content. PBAT hydrogen molecular relaxation varied randomly with nanocellulose content and had a strong effect on the hydrogen relaxation. PBAT cold crystallisation and melting temperatures (T<sub>cc</sub> and T<sub>m</sub>) were almost unchangeable. Although T<sub>cc</sub> did not change during polymer solidification from PBAT molten state, the sample’s degree of crystallinity varied with composition through the transcrystallization phenomenon. Nanocomposite thermal stability decreased possibly owing to the catalytic action of sulfonated amorphous cellulose chains. For the sample with 3 wt.% of nanocellulose, the highest values of complex viscosity and storage modulus were achieved.展开更多
In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate)(PBAC), which refers to a copolyester containing a non-planar rin...In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate)(PBAC), which refers to a copolyester containing a non-planar ring structure, were investigated by differential scanning calorimetry and polarized optical microscopy, and compared with those of neat poly(butylene 1,4-cyclohexanedicarboxylate)(PBC). The results indicate that the introduction of butylene adipate(BA) unit into PBAC did not change the intrinsical crystallization mechanism. But, the crystallization rate and ability, and equilibrium melting temperature of PBAC copolymers were reduced. All PBC and PBAC copolymers could only form high density of nucleation from melt at given supercooling, while no Maltese cross or ring-banded spherulites could be observed. PBAC copolymers with a high amount of BA unit became amorphous after quenching with liquid nitrogen from melt, while PBC and PBAC copolymers with a low amount of BA unit could still form a large amount of nuclei under the same treatment.展开更多
文摘The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this work aimed to study the effect of adding nanocellulose (nCE) with 1, 3, and 5 wt.% on poly(butylene adipate-co-butylene terephthalate) (PBAT). Thermal, structural, relaxometric, and rheological assessments were carried out. Quantitative evaluation of PBAT copolymer by high field NMR revealed 56.4 and 43.6 m.% of the butylene adipate and butylene terephthalate segments, respectively. WAXD measurement on the deconvoluted diffraction patterns identified that nCE was a mixing of Cellulose I and Cellulose II polymorph structures. At any composition, nanocellulose interfered with the PBAT crystallisation process. Also, a series of new PBAT crystallographic planes appeared as a function of nanocellulose content. PBAT hydrogen molecular relaxation varied randomly with nanocellulose content and had a strong effect on the hydrogen relaxation. PBAT cold crystallisation and melting temperatures (T<sub>cc</sub> and T<sub>m</sub>) were almost unchangeable. Although T<sub>cc</sub> did not change during polymer solidification from PBAT molten state, the sample’s degree of crystallinity varied with composition through the transcrystallization phenomenon. Nanocomposite thermal stability decreased possibly owing to the catalytic action of sulfonated amorphous cellulose chains. For the sample with 3 wt.% of nanocellulose, the highest values of complex viscosity and storage modulus were achieved.
基金financially supported by the National Natural Science Foundation of China(No.51503217)Zhejiang Province Public Welfare Project(No.2017C31081)+1 种基金the Open Project Program of MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University(No.2016MSF001)Youth Innovation Promotion Association CAS(No.2017339)
文摘In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate)(PBAC), which refers to a copolyester containing a non-planar ring structure, were investigated by differential scanning calorimetry and polarized optical microscopy, and compared with those of neat poly(butylene 1,4-cyclohexanedicarboxylate)(PBC). The results indicate that the introduction of butylene adipate(BA) unit into PBAC did not change the intrinsical crystallization mechanism. But, the crystallization rate and ability, and equilibrium melting temperature of PBAC copolymers were reduced. All PBC and PBAC copolymers could only form high density of nucleation from melt at given supercooling, while no Maltese cross or ring-banded spherulites could be observed. PBAC copolymers with a high amount of BA unit became amorphous after quenching with liquid nitrogen from melt, while PBC and PBAC copolymers with a low amount of BA unit could still form a large amount of nuclei under the same treatment.