Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs...Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs), vascular smooth muscle cells(VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissueresident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction(AMI), ischemic cardiomyopathy(ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.展开更多
Background: Adipose tissue-derived stem cells (ASC) possess the ability to differentiate into adipocytes or endothelial cells to help in the adipogenesis, vasculogenesis and vascular repair. This study aims at determi...Background: Adipose tissue-derived stem cells (ASC) possess the ability to differentiate into adipocytes or endothelial cells to help in the adipogenesis, vasculogenesis and vascular repair. This study aims at determining the impact of high-fat diets (HFD)-induced type 2 diabetes (T2D) on the differentiation potential of ASC. Results: C57BL/6J male mice were fed a vegetal (VD) or an animal (AD) HFD. Isolation of ACS from mice showing different levels of metabolic alterations reveals that advanced T2D did not affect the number of cells per gram of tissue. Rather, a higher proportion of inflammatory CD36+ cells was identified in HFD fed mice. Despite a marked decreased expression of adipogenic genes (aP2, C/EBPα and PPARγ2), ASC from HFD groups had a higher adipogenic potential and a lower endothelial differentiation potential in vitro compared to control. ASC from the VD group had enhanced cyclin B1 expression and had more adipogenic potential compared to AD group. Conclusion: Our results demonstrate that the metabolic modifications, linked to the nature of fatty acids in diets, modulate the differentiation potential of ASC with increased adipogenesis to the detriment of the endothelial pathway. Results highlight the importance of evaluating the ASC differentiation behavior in a context of autologous cell-based therapy for the repair of vascular tissues in diabetic patients.展开更多
BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment ...BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment method available.Recent studies have reported using mesenchymal stromal cells(MSCs),but their therapeutic effects are contested.AIM We administered and examined the effects of various amounts of adipose-derived MSCs(ADSCs)in mice with radiation-induced BM suppression.METHODS Mice were divided into three groups:Normal control group,irradiated(RT)group,and stem cell-treated group following whole-body irradiation(WBI).Mouse ADSCs(mADSCs)were transplanted into the peritoneal cavity either once or three times at 5×10^(5) cells/200μL.The white blood cell count and the levels of,plasma cytokines,BM mRNA,and BM surface markers were compared between the three groups.Human BM-derived CD34+hematopoietic progenitor cells were co-cultured with human ADSCs(hADSCs)or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro.RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants.Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells.Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.展开更多
BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exo...BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.展开更多
Stem cells hold great promise for regenerative medicine because of their ability to self-renew and to differentiate into various cell types. Although embryonic stem cells (BSC) have greater differentiation potential...Stem cells hold great promise for regenerative medicine because of their ability to self-renew and to differentiate into various cell types. Although embryonic stem cells (BSC) have greater differentiation potential than adult stem cells, the former is lagging in reaching clinical applications because of ethical concerns and governmental restrictions. Bone marrow stem cells (BMSC) are the best-studied adult stem cells (ASC) and have the potential to treat a wide variety of diseases, including erectile dysfunction (ED) and male infertility. More recently discovered adipose tissuederived stem cells (ADSC) are virtually identical to bone marrow stem cells in differentiation and therapeutic potential, but are easier and safer to obtain, can be harvested in larger quantities, and have the associated benefit of reducing obesity. Therefore, ADSC appear to be a better choice for future clinical applications. We have previously shown that ESC could restore the erectile function of neurogenic ED in rats, and we now have evidence that ADSC could do so as well. We are also investigating whether ADSC can differentiate into Leydig, Sertoli and male germ cells. The eventual goal is to use ADSC to treat male infertility and testosterone deficiency. (Asian JAndrol 2008 Mar; 10: 171-175)展开更多
Background Many researchers studied the possibility of using stem cells as gene therapeutic vector. But few related reports on the adipose tissue-derived stem cells (ADSCs) are available. Therefore we intended to co...Background Many researchers studied the possibility of using stem cells as gene therapeutic vector. But few related reports on the adipose tissue-derived stem cells (ADSCs) are available. Therefore we intended to construct a lentiviral VEGF165 expression vector and then infect the ADSCs to produce therapeutic seed cells.Methods EHS1001-68950485313912 clone was mutated by PCR method to produce consensus fragment of VEGF165 transcript (NM_001025368). Lentivirus was enveloped with pGC-FU, pHelper 1.0 and pHelper 2.0 plasmids in 293T cells.And then the ADSCs (multiplicity of infection=20) were transfected with the vectors after titer determination. Stable expression of VEGF165 in ADSCs was confirmed by immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis.Results DNA sequencing and 293T transfection verified VEGF165 was linked to the GFP fused vector. The virus titer is up to 2x10a determined by quantitative PCR. VEGF165 transduced cells could show green fluorescence confirmed by immunofluorescence staining (almost 95%). ELISA analyses could detect out the density of VEGF was 850.86-1202.13pg/ml (mean (923.00±31.22) pg/ml) in the supernatant of VEGF16s-transduced cells but not detected in the GFP-transduced cells (P 〈0.001) and the Western blotting analyses also confirmed VEGF165 expression in VEGF165-transduced cells.Conclusions The VEGF165 over-expression ADSCs were obtained and may be used as a cell therapeutic tool and may be applied for vascular regeneration, especially in the treatment of erectile dysfunction.展开更多
Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embry...Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embryonic stem cells (ESCs) or adult stem cells (ASCs). It was previously believed that only ESCs hold the ability to differentiate into any cell type, whereas ASCs have the capacity to give rise only to cells of a given germ layer. More recently, however, numerous studies demonstrated the ability of ASCs to differentiate into cell types beyond their tissue origin. The aim of this review was to summarize contemporary evidence regarding stem cell availability, differentiation, and more specifically, the potential of these cells in the diagnosis and treatment of erectile dysfunction (ED) in both animal models and human research. We performed a search on PubMed for articles related to definition, iocalisation and circulation of stem cells as well as the application of stem cells in both diagnosis and treatment of ED. Strong evidence supports the concept that stem cell therapy is potentially the next therapeutic approach for ED. To date, a large spectrum of stem cells, including bone marrow mesenchymal stem cells, adipose tissue-derived stem cells and muscle-derived stem cells, have been investigated for neural, vascular, endothelial or smooth muscle regeneration in animal models for ED. In addition, several subtypes of ASCs are localized in the penis, and circulating endogenous stem cells can be employed to predict the outcome of ED and ED-related cardiovascular diseases.展开更多
Background Y-27632 is a specific inhibitor of Rho-associated coiled kinase (ROCK) and has been shown to promote the survival and induce the differentiation of a variety of cells types. However, the effects of Y-2763...Background Y-27632 is a specific inhibitor of Rho-associated coiled kinase (ROCK) and has been shown to promote the survival and induce the differentiation of a variety of cells types. However, the effects of Y-27632 on adult human adipose tissue-derived stem cells (ADSCs) are unclear. This study aimed to investigate the effects of Y-27632 on the neuronal-like differentiation of ADSCs. Methods ADSCs were isolated from women undergoing plastic surgery and cultured. ADSCs were treated with different doses of Y-27632 and observed morphological changes under microscope. The expression of nestin, neuron specific enolase (NSE) and microtubule-associated protein-2 (MAP-2) in ADSCs treated with Y-27632 was detected by immunocytochemistry and Western blotting analysis. Results Y-27632 had the potency to induce neuronal-like differentiation in ADSCs in a dose-dependent manner. Moreover, the differentiation induced by Y-27632 was recovered upon drug withdraw. ADSCs treated with Y-27632 expressed neuronal markers such as NSE, MAP-2 and nestin while untreated ADSCs did not express these markers. Conclusion Selective ROCK inhibitor Y-27632 could potentiate the neuronal-like differentiation of ADSCs, suggesting that Y-27632 could be utilized to induce the differentiation of ADSCs to neurons and facilitate the clinical application of ADSCs in tissue engineering.展开更多
Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which prevascularization offers ...Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which prevascularization offers a promising solution.Hypoxia triggering pre-vascularization by enhanced vascular endothelial growth factor(VEGF)expression can be induced chemically by dimethyloxalylglycine(DMOG).Nanoporous silica nanoparticles(NPSNPs,or mesoporous silica nanoparticles,MSNs)enable sustained delivery of molecules and potentially release DMOG allowing a durable capillarization of a construct.Here we evaluated the effects of soluble DMOG and DMOG-loaded NPSNPs on VEGF secretion of adipose tissue-derived stem cells(ASC)and on tube formation by human umbilical vein endothelial cells(HUVEC)-ASC co-cultures.Repeated doses of 100 mM and 500 mM soluble DMOG on ASC resulted in 3-to 7-fold increased VEGF levels on day 9(P<0.0001).Same doses of DMOG-NPSNPs enhanced VEGF secretion 7.7-fold(P<0.0001)which could be maintained until day 12 with 500 mM DMOG-NPSNPs.In fibrin-based tube formation assays,100 mM DMOG-NPSNPs had inhibitory effects whereas 50 mM significantly increased tube length,area and number of junctions transiently for 4 days.Thus,DMOG-NPSNPs supported endothelial tube formation by upregulated VEGF secretion from ASC and thus display a promising tool for prevascularization of tissue-engineered constructs.Further studies will evaluate their effect in hydrogels under perfusion.展开更多
BACKGROUND Numerous studies investigated cell-based therapies for myocardial infarction(MI).The conflicting results of these studies have established the need for developing innovative approaches for applying cell-bas...BACKGROUND Numerous studies investigated cell-based therapies for myocardial infarction(MI).The conflicting results of these studies have established the need for developing innovative approaches for applying cell-based therapy for MI.Experimental studies on animal models demonstrated the potential of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UAADRCs)for treating acute MI.In contrast,studies on the treatment of chronic MI(CMI;>4 wk post-MI)with UA-ADRCs have not been published so far.Among several methods for delivering cells to the myocardium,retrograde delivery into a temporarily blocked coronary vein has recently been demonstrated as an effective option.AIM To test the hypothesis that in experimentally-induced chronic myocardial infarction(CMI;>4 wk post-MI)in pigs,retrograde delivery of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UA-ADRCs)into a temporarily blocked coronary vein improves cardiac function and structure.METHODS The left anterior descending(LAD)coronary artery of pigs was blocked for 180 min at time point T0.Then,either 18×106 UA-ADRCs prepared at“point of care”or saline as control were retrogradely delivered via an over-the-wire balloon catheter placed in the temporarily blocked LAD vein 4 wk after T0(T1).Effects of cells or saline were assessed by cardiac magnetic resonance(CMR)imaging,late gadolinium enhancement CMR imaging,and post mortem histologic analysis 10 wk after T0(T2).RESULTS Unlike the delivery of saline,delivery of UA-ADRCs demonstrated statistically significant improvements in cardiac function and structure at T2 compared to T1(all values given as mean±SE):Increased mean LVEF(UA-ADRCs group:34.3%±2.9%at T1 vs 40.4±2.6%at T2,P=0.037;saline group:37.8%±2.6%at T1 vs 36.2%±2.4%at T2,P>0.999),increased mean cardiac output(UA-ADRCs group:2.7±0.2 L/min at T1 vs 3.8±0.2 L/min at T2,P=0.002;saline group:3.4±0.3 L/min at T1 vs 3.6±0.3 L/min at T2,P=0.798),increased mean mass of the left ventricle(UA-ADRCs group:55.3±5.0 g at T1 vs 71.3±4.5 g at T2,P<0.001;saline group:63.2±3.4 g at T1 vs 68.4±4.0 g at T2,P=0.321)and reduced mean relative amount of scar volume of the left ventricular wall(UA-ADRCs group:20.9%±2.3%at T1 vs 16.6%±1.2%at T2,P=0.042;saline group:17.6%±1.4%at T1 vs 22.7%±1.8%at T2,P=0.022).CONCLUSION Retrograde cell delivery of UA-ADRCs in a porcine model for the study of CMI significantly improved myocardial function,increased myocardial mass and reduced the formation of scar tissue.展开更多
Erectile dysfunction(ED)is an important health problem that has commonly been clinically treated using phosphodiesterase type 5 inhibitors(PDE5Is).However,PDE5Is are less effective when the structure of the cavernous ...Erectile dysfunction(ED)is an important health problem that has commonly been clinically treated using phosphodiesterase type 5 inhibitors(PDE5Is).However,PDE5Is are less effective when the structure of the cavernous body has been severely injured,and thus regeneration is required.Stem cell therapy has been investigated as a possible means for regenerating the injured cavernous body.Stem cells are classified into embryonic stem cells and adult stem cells(ASCs),and the intracavernous injection of ASCs has been explored as a therapy in animal ED models.Bone marrowderived mesenchymal stem cells and adipose tissuederived stem cells are major sources of ASCs used for the treatment of ED,and accumulated evidence now suggests that ASCs are useful in the restoration of erectile function and the regeneration of the cavernous body.However,the mechanisms by which ASCs recover erectile function remain controversial.Some studies indicated that ASCs were differentiated into the vascular endothelial cells,vascular smooth muscle cells,and nerve cells that originally resided in the cavernous body,whereas other studies have suggested that ASCs improved erectile function via the secretion of anti-apoptotic and/or proangiogenic cytokines ratherthan differentiation into other cell types.In this paper,we reviewed the characteristics of stem cells used for the treatment of ED,and the possible mechanisms by which these cells exert their effects.We also discussed the problems to be solved before implementation in the clinical setting.展开更多
Objectives: Currently, the clinical repair of sciatic nerve injury remains difficult.Previous studies have confirmed that transplantation of adipose tissue-derived stem cells promotes nerve regeneration and restoratio...Objectives: Currently, the clinical repair of sciatic nerve injury remains difficult.Previous studies have confirmed that transplantation of adipose tissue-derived stem cells promotes nerve regeneration and restoration at peripheral nerve injury sites. Methods: In this study, adipose tissue-derived stem cells were induced to differentiate into neural progenitor cells, transfected with a green fluorescent protein-containing lentivirus, and then transplanted into the lesions of rats with sciatic nerve compression injury. Results: Fluorescence microscopy revealed that the transplanted cells survived,migrated, and differentiated in rats. At two weeks post-operation, a large number of transplanted cells had migrated to the injured lesions; at six weeks post-operation, transplanted cells were visible around the injured nerve and several cells were observed to express a Schwann cell marker. Sciatic function index and electrophysiological outcomes of the transplantation group were better than those of the control group. Cell transplantation promoted the recovery of motor nerve conduction velocity and compound muscle action potential amplitude, and reduced gastrocnemius muscle atrophy.Conclusions: Our experimental findings indicate that neural progenitor cells,differentiated from adipose tissue-derived stem cells, are potential seed stem cells that can be transplanted into lesions to treat sciatic nerve injury. This provides a theoretical basis for their use in clinical applications.展开更多
Human adipose tissue-derived stem cell(ADSC)derivatives are cell-free,with low immunogenicity and no potential tumourigenicity,making them ideal for aiding wound healing.However,variable quality has impeded their clin...Human adipose tissue-derived stem cell(ADSC)derivatives are cell-free,with low immunogenicity and no potential tumourigenicity,making them ideal for aiding wound healing.However,variable quality has impeded their clinical application.Metformin(MET)is a 5′adenosine monophosphate-activated protein kinase activator associated with autophagic activation.In this study,we assessed the potential applicability and underlying mechanisms of MET-treated ADSC derivatives in enhancing angiogenesis.We employed various scientific techniques to evaluate the influence of MET on ADSC,assess angiogenesis and autophagy in MET-treated ADSC in vitro,and examine whether MET-treated ADSC increase angiogenesis.We found that low MET concentrations exerted no appreciable effect on ADSC proliferation.However,MET was observed to enhance the angiogenic capacity and autophagy of ADSC.MET-induced autophagy was associated with increased vascular endothelial growth factor A production and release,which contributed to promoting the therapeutic efficacy of ADSC.In vivo experiments confirmed that in contrast to untreated ADSC,MET-treated ADSC promoted angiogenesis.Our findings thus indicate that the application of MET-treated ADSC would be an effective approach to accelerate wound healing by promoting angiogenesis at wound sites.展开更多
Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous s...Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.展开更多
Research has shown that cells from adult fat tissue can effect long-term blood reconstitution. Fat-derived multipotentiality was ascribed to CD34+ perivascular populations from its prominent microvasculature, that rep...Research has shown that cells from adult fat tissue can effect long-term blood reconstitution. Fat-derived multipotentiality was ascribed to CD34+ perivascular populations from its prominent microvasculature, that represent mostly non-hemogenic, mesenchymal cells, although this tissue contains a CD34+45+ subset committed to a hemogenic fate. Here, in order to analyze cell subsets presenting hemogenic capabilities within fat, CD133/1+ and pericytes, the latter defined by CD140b (PDGFRb, Platelet-Derived Growth Factor Receptor Beta) expression, were immunomagnetically selected from stromal-vascular fractions (SVF). In Vitro Colony Forming Unit (CFU) assays were negative for CD140b+ pericytes and positive for CD133/1+ cells when a prolonged CFU assay was performed, revealing fat as another store of primitive progenitors that retain hemogenic potential.展开更多
文摘Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs), vascular smooth muscle cells(VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissueresident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction(AMI), ischemic cardiomyopathy(ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.
基金This project was supported financially by grants from the Fondation des maladies du Coeur du Québec and from the Fondation de l’Institutde Cardiologie de Montréal to Dr Jean-Francois Tanguay.
文摘Background: Adipose tissue-derived stem cells (ASC) possess the ability to differentiate into adipocytes or endothelial cells to help in the adipogenesis, vasculogenesis and vascular repair. This study aims at determining the impact of high-fat diets (HFD)-induced type 2 diabetes (T2D) on the differentiation potential of ASC. Results: C57BL/6J male mice were fed a vegetal (VD) or an animal (AD) HFD. Isolation of ACS from mice showing different levels of metabolic alterations reveals that advanced T2D did not affect the number of cells per gram of tissue. Rather, a higher proportion of inflammatory CD36+ cells was identified in HFD fed mice. Despite a marked decreased expression of adipogenic genes (aP2, C/EBPα and PPARγ2), ASC from HFD groups had a higher adipogenic potential and a lower endothelial differentiation potential in vitro compared to control. ASC from the VD group had enhanced cyclin B1 expression and had more adipogenic potential compared to AD group. Conclusion: Our results demonstrate that the metabolic modifications, linked to the nature of fatty acids in diets, modulate the differentiation potential of ASC with increased adipogenesis to the detriment of the endothelial pathway. Results highlight the importance of evaluating the ASC differentiation behavior in a context of autologous cell-based therapy for the repair of vascular tissues in diabetic patients.
基金The Basic Science Research Program Through The National Research Foundation of Korea(NRF)Grant Funded By The Korean Government To Lee S.J.,No.2021R1F1A1052084.
文摘BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment method available.Recent studies have reported using mesenchymal stromal cells(MSCs),but their therapeutic effects are contested.AIM We administered and examined the effects of various amounts of adipose-derived MSCs(ADSCs)in mice with radiation-induced BM suppression.METHODS Mice were divided into three groups:Normal control group,irradiated(RT)group,and stem cell-treated group following whole-body irradiation(WBI).Mouse ADSCs(mADSCs)were transplanted into the peritoneal cavity either once or three times at 5×10^(5) cells/200μL.The white blood cell count and the levels of,plasma cytokines,BM mRNA,and BM surface markers were compared between the three groups.Human BM-derived CD34+hematopoietic progenitor cells were co-cultured with human ADSCs(hADSCs)or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro.RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants.Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells.Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.
文摘BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.
文摘Stem cells hold great promise for regenerative medicine because of their ability to self-renew and to differentiate into various cell types. Although embryonic stem cells (BSC) have greater differentiation potential than adult stem cells, the former is lagging in reaching clinical applications because of ethical concerns and governmental restrictions. Bone marrow stem cells (BMSC) are the best-studied adult stem cells (ASC) and have the potential to treat a wide variety of diseases, including erectile dysfunction (ED) and male infertility. More recently discovered adipose tissuederived stem cells (ADSC) are virtually identical to bone marrow stem cells in differentiation and therapeutic potential, but are easier and safer to obtain, can be harvested in larger quantities, and have the associated benefit of reducing obesity. Therefore, ADSC appear to be a better choice for future clinical applications. We have previously shown that ESC could restore the erectile function of neurogenic ED in rats, and we now have evidence that ADSC could do so as well. We are also investigating whether ADSC can differentiate into Leydig, Sertoli and male germ cells. The eventual goal is to use ADSC to treat male infertility and testosterone deficiency. (Asian JAndrol 2008 Mar; 10: 171-175)
文摘Background Many researchers studied the possibility of using stem cells as gene therapeutic vector. But few related reports on the adipose tissue-derived stem cells (ADSCs) are available. Therefore we intended to construct a lentiviral VEGF165 expression vector and then infect the ADSCs to produce therapeutic seed cells.Methods EHS1001-68950485313912 clone was mutated by PCR method to produce consensus fragment of VEGF165 transcript (NM_001025368). Lentivirus was enveloped with pGC-FU, pHelper 1.0 and pHelper 2.0 plasmids in 293T cells.And then the ADSCs (multiplicity of infection=20) were transfected with the vectors after titer determination. Stable expression of VEGF165 in ADSCs was confirmed by immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis.Results DNA sequencing and 293T transfection verified VEGF165 was linked to the GFP fused vector. The virus titer is up to 2x10a determined by quantitative PCR. VEGF165 transduced cells could show green fluorescence confirmed by immunofluorescence staining (almost 95%). ELISA analyses could detect out the density of VEGF was 850.86-1202.13pg/ml (mean (923.00±31.22) pg/ml) in the supernatant of VEGF16s-transduced cells but not detected in the GFP-transduced cells (P 〈0.001) and the Western blotting analyses also confirmed VEGF165 expression in VEGF165-transduced cells.Conclusions The VEGF165 over-expression ADSCs were obtained and may be used as a cell therapeutic tool and may be applied for vascular regeneration, especially in the treatment of erectile dysfunction.
文摘Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embryonic stem cells (ESCs) or adult stem cells (ASCs). It was previously believed that only ESCs hold the ability to differentiate into any cell type, whereas ASCs have the capacity to give rise only to cells of a given germ layer. More recently, however, numerous studies demonstrated the ability of ASCs to differentiate into cell types beyond their tissue origin. The aim of this review was to summarize contemporary evidence regarding stem cell availability, differentiation, and more specifically, the potential of these cells in the diagnosis and treatment of erectile dysfunction (ED) in both animal models and human research. We performed a search on PubMed for articles related to definition, iocalisation and circulation of stem cells as well as the application of stem cells in both diagnosis and treatment of ED. Strong evidence supports the concept that stem cell therapy is potentially the next therapeutic approach for ED. To date, a large spectrum of stem cells, including bone marrow mesenchymal stem cells, adipose tissue-derived stem cells and muscle-derived stem cells, have been investigated for neural, vascular, endothelial or smooth muscle regeneration in animal models for ED. In addition, several subtypes of ASCs are localized in the penis, and circulating endogenous stem cells can be employed to predict the outcome of ED and ED-related cardiovascular diseases.
文摘Background Y-27632 is a specific inhibitor of Rho-associated coiled kinase (ROCK) and has been shown to promote the survival and induce the differentiation of a variety of cells types. However, the effects of Y-27632 on adult human adipose tissue-derived stem cells (ADSCs) are unclear. This study aimed to investigate the effects of Y-27632 on the neuronal-like differentiation of ADSCs. Methods ADSCs were isolated from women undergoing plastic surgery and cultured. ADSCs were treated with different doses of Y-27632 and observed morphological changes under microscope. The expression of nestin, neuron specific enolase (NSE) and microtubule-associated protein-2 (MAP-2) in ADSCs treated with Y-27632 was detected by immunocytochemistry and Western blotting analysis. Results Y-27632 had the potency to induce neuronal-like differentiation in ADSCs in a dose-dependent manner. Moreover, the differentiation induced by Y-27632 was recovered upon drug withdraw. ADSCs treated with Y-27632 expressed neuronal markers such as NSE, MAP-2 and nestin while untreated ADSCs did not express these markers. Conclusion Selective ROCK inhibitor Y-27632 could potentiate the neuronal-like differentiation of ADSCs, suggesting that Y-27632 could be utilized to induce the differentiation of ADSCs to neurons and facilitate the clinical application of ADSCs in tissue engineering.
基金supported by the German Society for Implant Research and Development(Funding title“Vascularization of bioartificial implants 2017-2020”)and in part by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy-EXC 2177/1-Project ID 390895286.
文摘Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which prevascularization offers a promising solution.Hypoxia triggering pre-vascularization by enhanced vascular endothelial growth factor(VEGF)expression can be induced chemically by dimethyloxalylglycine(DMOG).Nanoporous silica nanoparticles(NPSNPs,or mesoporous silica nanoparticles,MSNs)enable sustained delivery of molecules and potentially release DMOG allowing a durable capillarization of a construct.Here we evaluated the effects of soluble DMOG and DMOG-loaded NPSNPs on VEGF secretion of adipose tissue-derived stem cells(ASC)and on tube formation by human umbilical vein endothelial cells(HUVEC)-ASC co-cultures.Repeated doses of 100 mM and 500 mM soluble DMOG on ASC resulted in 3-to 7-fold increased VEGF levels on day 9(P<0.0001).Same doses of DMOG-NPSNPs enhanced VEGF secretion 7.7-fold(P<0.0001)which could be maintained until day 12 with 500 mM DMOG-NPSNPs.In fibrin-based tube formation assays,100 mM DMOG-NPSNPs had inhibitory effects whereas 50 mM significantly increased tube length,area and number of junctions transiently for 4 days.Thus,DMOG-NPSNPs supported endothelial tube formation by upregulated VEGF secretion from ASC and thus display a promising tool for prevascularization of tissue-engineered constructs.Further studies will evaluate their effect in hydrogels under perfusion.
基金Supported by Alliance of Cardiovascular Researchers(New Orleans,LA 70102,United States),No.2013-AH-01(to Haenel A)
文摘BACKGROUND Numerous studies investigated cell-based therapies for myocardial infarction(MI).The conflicting results of these studies have established the need for developing innovative approaches for applying cell-based therapy for MI.Experimental studies on animal models demonstrated the potential of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UAADRCs)for treating acute MI.In contrast,studies on the treatment of chronic MI(CMI;>4 wk post-MI)with UA-ADRCs have not been published so far.Among several methods for delivering cells to the myocardium,retrograde delivery into a temporarily blocked coronary vein has recently been demonstrated as an effective option.AIM To test the hypothesis that in experimentally-induced chronic myocardial infarction(CMI;>4 wk post-MI)in pigs,retrograde delivery of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UA-ADRCs)into a temporarily blocked coronary vein improves cardiac function and structure.METHODS The left anterior descending(LAD)coronary artery of pigs was blocked for 180 min at time point T0.Then,either 18×106 UA-ADRCs prepared at“point of care”or saline as control were retrogradely delivered via an over-the-wire balloon catheter placed in the temporarily blocked LAD vein 4 wk after T0(T1).Effects of cells or saline were assessed by cardiac magnetic resonance(CMR)imaging,late gadolinium enhancement CMR imaging,and post mortem histologic analysis 10 wk after T0(T2).RESULTS Unlike the delivery of saline,delivery of UA-ADRCs demonstrated statistically significant improvements in cardiac function and structure at T2 compared to T1(all values given as mean±SE):Increased mean LVEF(UA-ADRCs group:34.3%±2.9%at T1 vs 40.4±2.6%at T2,P=0.037;saline group:37.8%±2.6%at T1 vs 36.2%±2.4%at T2,P>0.999),increased mean cardiac output(UA-ADRCs group:2.7±0.2 L/min at T1 vs 3.8±0.2 L/min at T2,P=0.002;saline group:3.4±0.3 L/min at T1 vs 3.6±0.3 L/min at T2,P=0.798),increased mean mass of the left ventricle(UA-ADRCs group:55.3±5.0 g at T1 vs 71.3±4.5 g at T2,P<0.001;saline group:63.2±3.4 g at T1 vs 68.4±4.0 g at T2,P=0.321)and reduced mean relative amount of scar volume of the left ventricular wall(UA-ADRCs group:20.9%±2.3%at T1 vs 16.6%±1.2%at T2,P=0.042;saline group:17.6%±1.4%at T1 vs 22.7%±1.8%at T2,P=0.022).CONCLUSION Retrograde cell delivery of UA-ADRCs in a porcine model for the study of CMI significantly improved myocardial function,increased myocardial mass and reduced the formation of scar tissue.
文摘Erectile dysfunction(ED)is an important health problem that has commonly been clinically treated using phosphodiesterase type 5 inhibitors(PDE5Is).However,PDE5Is are less effective when the structure of the cavernous body has been severely injured,and thus regeneration is required.Stem cell therapy has been investigated as a possible means for regenerating the injured cavernous body.Stem cells are classified into embryonic stem cells and adult stem cells(ASCs),and the intracavernous injection of ASCs has been explored as a therapy in animal ED models.Bone marrowderived mesenchymal stem cells and adipose tissuederived stem cells are major sources of ASCs used for the treatment of ED,and accumulated evidence now suggests that ASCs are useful in the restoration of erectile function and the regeneration of the cavernous body.However,the mechanisms by which ASCs recover erectile function remain controversial.Some studies indicated that ASCs were differentiated into the vascular endothelial cells,vascular smooth muscle cells,and nerve cells that originally resided in the cavernous body,whereas other studies have suggested that ASCs improved erectile function via the secretion of anti-apoptotic and/or proangiogenic cytokines ratherthan differentiation into other cell types.In this paper,we reviewed the characteristics of stem cells used for the treatment of ED,and the possible mechanisms by which these cells exert their effects.We also discussed the problems to be solved before implementation in the clinical setting.
基金Supported by the National Natural Science Foundation of China(Nos.81171089 and 81471201)the Scientific and Technological Projects of Wuhan City of China(No.2013060602010240)
文摘Objectives: Currently, the clinical repair of sciatic nerve injury remains difficult.Previous studies have confirmed that transplantation of adipose tissue-derived stem cells promotes nerve regeneration and restoration at peripheral nerve injury sites. Methods: In this study, adipose tissue-derived stem cells were induced to differentiate into neural progenitor cells, transfected with a green fluorescent protein-containing lentivirus, and then transplanted into the lesions of rats with sciatic nerve compression injury. Results: Fluorescence microscopy revealed that the transplanted cells survived,migrated, and differentiated in rats. At two weeks post-operation, a large number of transplanted cells had migrated to the injured lesions; at six weeks post-operation, transplanted cells were visible around the injured nerve and several cells were observed to express a Schwann cell marker. Sciatic function index and electrophysiological outcomes of the transplantation group were better than those of the control group. Cell transplantation promoted the recovery of motor nerve conduction velocity and compound muscle action potential amplitude, and reduced gastrocnemius muscle atrophy.Conclusions: Our experimental findings indicate that neural progenitor cells,differentiated from adipose tissue-derived stem cells, are potential seed stem cells that can be transplanted into lesions to treat sciatic nerve injury. This provides a theoretical basis for their use in clinical applications.
基金the National Natural Science Foundation of China(grant no.81871578)the Naval Military Medical University Basic Research Project(2022MS010)the Shanghai Municipal Commission of Health and Family Planning Clinical Research Program(20184Y0113).
文摘Human adipose tissue-derived stem cell(ADSC)derivatives are cell-free,with low immunogenicity and no potential tumourigenicity,making them ideal for aiding wound healing.However,variable quality has impeded their clinical application.Metformin(MET)is a 5′adenosine monophosphate-activated protein kinase activator associated with autophagic activation.In this study,we assessed the potential applicability and underlying mechanisms of MET-treated ADSC derivatives in enhancing angiogenesis.We employed various scientific techniques to evaluate the influence of MET on ADSC,assess angiogenesis and autophagy in MET-treated ADSC in vitro,and examine whether MET-treated ADSC increase angiogenesis.We found that low MET concentrations exerted no appreciable effect on ADSC proliferation.However,MET was observed to enhance the angiogenic capacity and autophagy of ADSC.MET-induced autophagy was associated with increased vascular endothelial growth factor A production and release,which contributed to promoting the therapeutic efficacy of ADSC.In vivo experiments confirmed that in contrast to untreated ADSC,MET-treated ADSC promoted angiogenesis.Our findings thus indicate that the application of MET-treated ADSC would be an effective approach to accelerate wound healing by promoting angiogenesis at wound sites.
基金This research was supported by the Beijing Natural Science Foundation (Grant No. 7174362) and the National Natural Science Foundation of China (Grant No. 81601272).
文摘Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.
文摘Research has shown that cells from adult fat tissue can effect long-term blood reconstitution. Fat-derived multipotentiality was ascribed to CD34+ perivascular populations from its prominent microvasculature, that represent mostly non-hemogenic, mesenchymal cells, although this tissue contains a CD34+45+ subset committed to a hemogenic fate. Here, in order to analyze cell subsets presenting hemogenic capabilities within fat, CD133/1+ and pericytes, the latter defined by CD140b (PDGFRb, Platelet-Derived Growth Factor Receptor Beta) expression, were immunomagnetically selected from stromal-vascular fractions (SVF). In Vitro Colony Forming Unit (CFU) assays were negative for CD140b+ pericytes and positive for CD133/1+ cells when a prolonged CFU assay was performed, revealing fat as another store of primitive progenitors that retain hemogenic potential.