期刊文献+
共找到5,573篇文章
< 1 2 250 >
每页显示 20 50 100
Exosomes from circ-Astn1-modified adipose-derived mesenchymal stem cells enhance wound healing through miR-138-5p/SIRT1/FOXO1 axis regulation 被引量:1
1
作者 Zhi Wang Cheng Feng +4 位作者 Hao Liu Tian Meng Wei-Qing Huang Ke-Xin Song You-Bin Wang 《World Journal of Stem Cells》 SCIE 2023年第5期476-489,共14页
BACKGROUND Wound healing impairment is a dysfunction induced by hyperglycemia and its effect on endothelial precursor cells(EPCs)in type 2 diabetes mellitus.There is increasing evidence showing that exosomes(Exos)deri... BACKGROUND Wound healing impairment is a dysfunction induced by hyperglycemia and its effect on endothelial precursor cells(EPCs)in type 2 diabetes mellitus.There is increasing evidence showing that exosomes(Exos)derived from adipose-derived mesenchymal stem cells(ADSCs)exhibit the potential to improve endothelial cell function along with wound healing.However,the potential therapeutic mechanism by which ADSC Exos contribute to wound healing in diabetic mice remains unclear.AIM To reveal the potential therapeutic mechanism of ADSC Exos in wound healing in diabetic mice.METHODS Exos from ADSCs and fibroblasts were used for high-throughput RNA sequencing(RNA-Seq).ADSC-Exo-mediated healing of full-thickness skin wounds in a diabetic mouse model was investigated.We employed EPCs to investigate the therapeutic function of Exos in cell damage and dysfunction caused by high glucose(HG).We utilized a luciferase reporter(LR)assay to analyze interactions among circular RNA astrotactin 1(circ-Astn1),sirtuin(SIRT)and miR-138-5p.A diabetic mouse model was used to verify the therapeutic effect of circ-Astn1 on Exo-mediated wound healing.RESULTS High-throughput RNA-Seq analysis showed that circ-Astn1 expression was increased in ADSC Exos compared with Exos from fibroblasts.Exos containing high concentrations of circ-Astn1 had enhanced therapeutic effects in restoring EPC function under HG conditions by promoting SIRT1 expression.Circ-Astn1 expression enhanced SIRT1 expression through miR-138-5p adsorption,which was validated by the LR assay along with bioinformatics analyses.Exos containing high concentrations of circ-Astn1 had better therapeutic effects on wound healing in vivo compared to wild-type ADSC Exos.Immunofluorescence and immunohistochemical investigations suggested that circ-Astn1 enhanced angiopoiesis through Exo treatment of wounded skin as well as by suppressing apoptosis through promotion of SIRT1 and decreased forkhead box O1 expression.CONCLUSION Circ-Astn1 promotes the therapeutic effect of ADSC-Exos and thus improves wound healing in diabetes via miR-138-5p absorption and SIRT1 upregulation.Based on our data,we advocate targeting the circ-Astn1/miR-138-5p/SIRT1 axis as a potential therapeutic option for the treatment of diabetic ulcers. 展开更多
关键词 adipose-derived mesenchymal stem cells Circular RNA astrotactin 1 DIABETIC exosomes ANGIOGENESIS
下载PDF
Mechanism of adipose-derived mesenchymal stem cell exosomes in the treatment of heart failure
2
作者 Lei Wang Jin-Jin Zhang +1 位作者 Sha-Sha Wang Liang Li 《World Journal of Stem Cells》 SCIE 2023年第9期897-907,共11页
BACKGROUND Heart failure(HF)is a global health problem characterized by impaired heart function.Cardiac remodeling and cell death contribute to the development of HF.Although treatments such as digoxin and angiotensin... BACKGROUND Heart failure(HF)is a global health problem characterized by impaired heart function.Cardiac remodeling and cell death contribute to the development of HF.Although treatments such as digoxin and angiotensin receptor blocker drugs have been used,their effectiveness in reducing mortality is uncertain.Researchers are exploring the use of adipose-derived mesenchymal stem cell(ADMSC)exosomes(Exos)as a potential therapy for HF.These vesicles,secreted by cells,may aid in tissue repair and regulation of inflammation and immune responses.However,further investigation is needed to understand the specific role of these vesicles in HF treatment.AIM To investigate the mechanism of extracellular vesicles produced by ADMSC s in the treatment of HF.METHODS Exogenous surface markers of ADMSCs were found,and ADMSCs were cultured.RESULTS The identification of surface markers showed that the surface markers CD44 and CD29 of adipose-derived stem cells(ADSCs)were well expressed,while the surface markers CD45 and CD34 of ADSCs were negative,so the cultured cells were considered ADSCs.Western blotting detected the Exo surface marker protein,which expressed CD63 protein but did not express calnexin protein,indicating that ADSC-derived Exos were successfully extracted.CONCLUSION The secretion of MSCs from adipose tissue can increase ATP levels,block cardiomyocyte apoptosis,and enhance the heart function of animals susceptible to HF.The inhibition of Bax,caspase-3 and p53 protein expression may be related to this process. 展开更多
关键词 adipose-derived mesenchymal stem cell exosomes Heart failure Cardiomyocyte apoptosis
下载PDF
Pathogenic and therapeutic role of exosomes in neurodegenerative disorders 被引量:2
3
作者 Christa C.Huber Hongmin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期75-79,共5页
Neurodegenerative disorders affect millions of people worldwide,and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years.While thera... Neurodegenerative disorders affect millions of people worldwide,and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years.While therapies exist to aid in symptomatic relief,effective treatments that can stop or reve rse the progress of each neurodegenerative disease are lacking.Recently,research on the role of extracellular vesicles as disease markers and therapeutics has been intensively studied.Exosomes,30-150 nm in diameter,are one type of extracellular vesicles facilitating cell-to-cell communication.Exosomes are thought to play a role in disease propagation in a variety of neurodegenerative diseases,such as Alzheimer's disease,Parkinson s disease,and amyotrophic lateral sclerosis.Accordingly,the exosomes derived from the patients are an invaluable source of disease biomarkers.On the other hand,exosomes,especially those derived from stem cells,could serve as a therapeutic for these disorders,as seen by a rapid increase in clinical trials investigating the therapeutic efficacy of exosomes in different neurological diseases.This review summarizes the pathological burden and therapeutic approach of exosomes in neurodegenerative disorders.We also highlight how heat shock increases the yield of exosomes while still maintaining their therapeutic efficacy.Finally,this review concludes with outstanding questions that remain to be addressed in exosomal research. 展开更多
关键词 aging Alzheimer's disease biomarker drug exosomE extracellular vesicle neurodegenerative disease Parkinson's disease therapy
下载PDF
New roles of tumor-derived exosomes in tumor microenvironment 被引量:1
4
作者 Shiqian Chen Jinzhe Sun +3 位作者 Huan Zhou Hongbin Lei Dan Zang Jun Chen 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2024年第2期151-166,共16页
Throughout tumorigenesis, the co-evolution of tumor cells and their surrounding microenvironment leads to the development of malignant phenotypes. Cellular communication within the tumor microenvironment(TME) plays a ... Throughout tumorigenesis, the co-evolution of tumor cells and their surrounding microenvironment leads to the development of malignant phenotypes. Cellular communication within the tumor microenvironment(TME) plays a critical role in influencing various aspects of tumor progression, including invasion and metastasis. The release of exosomes, a type of extracellular vesicle, by most cell types in the body, is an essential mediator of intercellular communication. A growing body of research indicates that tumor-derived exosomes(TDEs) significantly expedite tumor progression through multiple mechanisms, inducing epithelial-mesenchymal transition and macrophage polarization, enhancing angiogenesis, and aiding in the immune evasion of tumor cells. Herein, we describe the formation and characteristics of the TME, and summarize the contents of TDEs and their diverse functions in modulating tumor development. Furthermore, we explore potential applications of TDEs in tumor diagnosis and treatment. 展开更多
关键词 Tumor-derived exosomes TUMORIGENESIS tumor microenvironment DIAGNOSIS TREATMENT
下载PDF
Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome 被引量:1
5
作者 Xin Li Li-Jiang Ji +4 位作者 Kai-Di Feng Hua Huang Mei-Rou Liang Shi-Jin Cheng Xiu-Dong Meng 《World Journal of Gastroenterology》 SCIE CAS 2024年第6期527-541,共15页
Ulcerative colitis(UC)is a chronic recurrent inflammatory bowel disease.Despite ongoing advances in our understanding of UC,its pathogenesis is yet unelu-cidated,underscoring the urgent need for novel treatment strate... Ulcerative colitis(UC)is a chronic recurrent inflammatory bowel disease.Despite ongoing advances in our understanding of UC,its pathogenesis is yet unelu-cidated,underscoring the urgent need for novel treatment strategies for patients with UC.Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules,such as proteins,RNAs,DNA,and metabolites.The NOD-like receptor family pyrin domain containing 3(NLRP3)inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β(IL-1β)and IL-18,triggering the inflammatory response to a pathogenic agent or injury.Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome,with vital roles in the pathological process of UC.Here,recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC.First,the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized.Finally,an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are high-lighted. 展开更多
关键词 Ulcerative colitis exosomes INFLAMMASOME Evidence THERAPEUTICS
下载PDF
Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study 被引量:1
6
作者 ErdinçCivelek Serdar Kabatas +4 位作者 Eyüp Can Savrunlu Furkan Diren Necati Kaplan Demet Ofluoğlu Erdal Karaöz 《World Journal of Stem Cells》 SCIE 2024年第1期19-32,共14页
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the exist... BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress. 展开更多
关键词 Mesenchymal stem cell exosomes Radial nerve Sural nerve
下载PDF
The role of exosomes in adult neurogenesis:implications for neurodegenerative diseases 被引量:1
7
作者 Zhuoyang Yu Yan Teng +1 位作者 Jing Yang Lu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期282-288,共7页
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso... Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system. 展开更多
关键词 adult neurogenesis Alzheimer’s disease amyotrophic lateral sclerosis exosomE Huntington’s disease neurodegenerative disease neurogenic niches Parkinson’s disease
下载PDF
Neural stem cell-derived exosomes promote mitochondrial biogenesis and restore abnormal protein distribution in a mouse model of Alzheimer's disease 被引量:1
8
作者 Bo Li Yujie Chen +10 位作者 Yan Zhou Xuanran Feng Guojun Gu Shuang Han Nianhao Cheng Yawen Sun Yiming Zhang Jiahui Cheng Qi Zhang Wei Zhang Jianhui Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1593-1601,共9页
Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheime... Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheimer’s disease affects the entire brain,further research is needed to elucidate alterations in mitochondrial metabolism in the brain as a whole.Here,we investigated the expression of several important mitochondrial biogenesis-related cytokines in multiple brain regions after treatment with neural stem cell-derived exosomes and used a combination of whole brain clearing,immunostaining,and lightsheet imaging to clarify their spatial distribution.Additionally,to clarify whether the sirtuin 1(SIRT1)-related pathway plays a regulatory role in neural stem cell-de rived exosomes interfering with mitochondrial functional changes,we generated a novel nervous system-SIRT1 conditional knoc kout AP P/PS1mouse model.Our findings demonstrate that neural stem cell-de rived exosomes significantly increase SIRT1 levels,enhance the production of mitochondrial biogenesis-related fa ctors,and inhibit astrocyte activation,but do not suppress amyloid-βproduction.Thus,neural stem cell-derived exosomes may be a useful therapeutic strategy for Alzheimer’s disease that activates the SIRT1-PGC1αsignaling pathway and increases NRF1 and COXIV synthesis to improve mitochondrial biogenesis.In addition,we showed that the spatial distribution of mitochondrial biogenesis-related factors is disrupted in Alzheimer’s disease,and that neural stem cell-derived exosome treatment can reverse this effect,indicating that neural stem cell-derived exosomes promote mitochondrial biogenesis. 展开更多
关键词 Alzheimer’s disease mitochondrial biogenesis neural stem cell-derived exosome SIRT1-PGC1α regional brain distribution whole brain clearing and imaging
下载PDF
Biological,pathological,and multifaceted therapeutic functions of exosomes to target cancer
9
作者 VIGNESH BALAJI E DIVYA RAMESH +8 位作者 MANISHA CHUNGAN SHAJU AKSHARA KUMAR SAMYAK PANDEY RAKSHA NAYAK V.ALKA SRISHTI MUNJAL AMIR SALIMI K.SREEDHARA RANGANATH PAI SHANKAR M.BAKKANNAVAR 《Oncology Research》 SCIE 2024年第1期73-94,共22页
Exosomes,small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body.It is considered a“double-edged s... Exosomes,small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body.It is considered a“double-edged sword”,and depending on its biological source,the action of exosomes varies under physiological conditions.Also,the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source.Moreover,the uptake of exosomes from the recipients’cells is a vital and initial step for all the physiological actions.There are different mechanisms present in the exosomes’cellular uptake to deliver their cargo to acceptor cells.Once the exosomal uptake takes place,it releases the intracellular particles that leads to activate the physiological response.Even though exosomes have lavish functions,there are some challenges associated with every step of their preparation to bring potential therapeutic efficacy.So,overcoming the pitfalls would give a desired quantity of exosomes with high purity. 展开更多
关键词 exosomes PHYSIOLOGY CANCER THERAPEUTICS Challenges
下载PDF
The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types
10
作者 Hongye Xu He Li +9 位作者 Ping Zhang Yuan Gao Hongyu Ma Tianxiang Gao Hanchen Liu Weilong Hua Lei Zhang Xiaoxi Zhang Pengfei Yang Jianmin Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1947-1953,共7页
Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extra... Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins,peptides,nucleotides,and lipids secreted from their cellular sources.Increasing evidence shows that exosomes participate in a communication network in the nervous system,in which astrocyte-derived exosomes play important roles.In this review,we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system.We also discuss the potential research directions of the exosome-based communication network in the nervous system.The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain.New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators. 展开更多
关键词 ASTROCYTES communication exosomes neurological disorders targeting mechanism
下载PDF
New insight into the role of exosomes in idiopathic membrane nephropathy
11
作者 JIANHONG LIU KAI HE +1 位作者 HAN WANG XIAOHONG CHENG 《BIOCELL》 SCIE 2024年第1期21-32,共12页
Exosomes,nanoscale extracellular vesicles(EVs)derived from the invagination of the endosomal membrane,are secreted by a majority of cell types.As carriers of DNA,mRNA,proteins,and microRNAs,exosomes are implicated in ... Exosomes,nanoscale extracellular vesicles(EVs)derived from the invagination of the endosomal membrane,are secreted by a majority of cell types.As carriers of DNA,mRNA,proteins,and microRNAs,exosomes are implicated in regulating biological activities under physiological and pathological conditions.Kidney-derived exosomes,which vary in origin and function,may either contribute to the pathogenesis of disease or represent a potential therapeutic resource.Membranous nephropathy(MN),an autoimmune kidney disease characterized by glomerular damage,is a predominant cause of nephrotic syndrome.Notably,MN,especially idiopathic membranous nephropathy(IMN),often results in end-stage renal disease(ESRD),affecting approximately 30%of patients and posing a considerable economic challenge to healthcare systems.Despite substantial research,therapeutic options remain ineffective at halting IMN progression,underscoring the urgent need for innovative strategies.Emerging evidence has implicated exosomes in IMN’s pathophysiology;Providing a fresh perspective for the discovery of novel biomarkers and therapeutic strategies.This review aims to scrutinize recent developments in exosome-related mechanisms in IMN and evaluate their potential as promising therapeutic targets and diagnostic biomarkers,with the hope of catalyzing further investigations into the utility of exosomes in MN,particularly IMN,ultimately contributing to improved patient outcomes in these challenging disease settings. 展开更多
关键词 exosomes Biomarkers Membranous nephropathy Therapeutic targets
下载PDF
Photobiomodulation:a novel approach to promote trans-differentiation of adipose-derived stem cells into neuronal-like cells
12
作者 Daniella Da Silva Madeleen Jansen van Rensburg +1 位作者 Anine Crous Heidi Abrahamse 《Neural Regeneration Research》 SCIE CAS 2025年第2期598-608,共11页
Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infr... Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration,which is necessary for the cells homing to the site of injury.In this in vitro study,we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries.We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2.As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects.Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers,with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group.Interestingly,green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation,while near-infrared photobiomodulation notably increased the expression of neuronal markers.Through biochemical analysis and enzyme-linked immunosorbent assays,we observed marked improvements in viability,proliferation,membrane permeability,and mitochondrial membrane potential,as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor.Overall,our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells,offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries. 展开更多
关键词 differentiation inducers green photobiomodulation immortalized adipose-derived stem cell near-infrared photobiomodulation neurodegenerative disease NEUROGENESIS PHOTOBIOMODULATION TRANS-DIFFERENTIATION
下载PDF
The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders
13
作者 Rui HE Yong CHEN 《Current Medical Science》 SCIE CAS 2024年第3期463-474,共12页
Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases,such as type 2 diabetes mellitus(T2DM),cardiovascular diseases,and non-alcoholic fatty liver disease(NAFLD).Adipose tissue is no... Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases,such as type 2 diabetes mellitus(T2DM),cardiovascular diseases,and non-alcoholic fatty liver disease(NAFLD).Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles(EVs)that play a role in the regulation of whole-body metabolism.Exosomes are a subtype of EVs,and accumulating evidence indicates that adipose tissue exosomes(AT Exos)mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms.However,the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated.In this review,we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders.Moreover,we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application. 展开更多
关键词 exosomE adipose tissue OBESITY DIABETES chronic metabolic disorder miRNA
下载PDF
A Comprehensive Review of Exosomes with Therapeutic Potential in Cancer and Coeliac Disease
14
作者 Fathima Assainar Joshua George Thomas +3 位作者 Zoya Saleem Shafa Thekkekara Fathima Mammoo Navadir Nidal Kallan 《Journal of Biosciences and Medicines》 2024年第3期25-34,共10页
The aim of this review was to evaluate the therapeutic potential of exosomes, extracellular vesicles secreted by cells. They have emerged as potential therapeutic transporters for several diseases. This review provide... The aim of this review was to evaluate the therapeutic potential of exosomes, extracellular vesicles secreted by cells. They have emerged as potential therapeutic transporters for several diseases. This review provides an overview of exosomes’ therapeutic potential in cancer therapy and autoimmune conditions such as Coeliac Disease. The therapeutic effect is that the phospholipid-binding protein ANXA1 improves its anti-inflammatory properties. The review also analyzes the intricate processes of exosome production and composition ability to transport biomolecules such as proteins, microRNAs, and lipids, which promote intercellular communication and alter recipient cell behavior. Exosomes, linked to neurological disorders, cardiovascular disease, and cancer, present the means of targeted drug administration due to their innate specificity. Through genetic engineering and chemical modifications, exosomes can be tailored for specific purposes, demonstrating their versatility in targeted therapy. With ongoing research uncovering their therapeutic potential, exosomes present a promising frontier in novel medical treatments across various health conditions. 展开更多
关键词 exosomes CANCER Coeliac Disease Therapeutic Potential Cell Communication ANTI-INFLAMMATION
下载PDF
Adipose-derived stem cells in diabetic foot care:Bridging clinical trials and practical application
15
作者 Song-Lu Tseng Lin Kang +7 位作者 Zhu-Jun Li Li-Quan Wang Zi-Ming Li Tian-Hao Li Jie-Yu Xiang Jiu-Zuo Huang Nan-Ze Yu Xiao Long 《World Journal of Diabetes》 SCIE 2024年第6期1162-1177,共16页
Diabetic foot ulcers(DFUs)pose a critical medical challenge,significantly impairing the quality of life of patients.Adipose-derived stem cells(ADSCs)have been identified as a promising therapeutic approach for improvi... Diabetic foot ulcers(DFUs)pose a critical medical challenge,significantly impairing the quality of life of patients.Adipose-derived stem cells(ADSCs)have been identified as a promising therapeutic approach for improving wound healing in DFUs.Despite extensive exploration of the mechanical aspects of ADSC therapy against DFU,its clinical applications remain elusive.In this review,we aimed to bridge this gap by evaluating the use and advancements of ADSCs in the clinical management of DFUs.The review begins with a discussion of the classification and clinical management of diabetic foot conditions.It then discusses the current landscape of clinical trials,focusing on their geographic distribution,reported efficacy,safety profiles,treatment timing,administration techniques,and dosing considerations.Finally,the review discusses the preclinical strategies to enhance ADSC efficacy.This review shows that many trials exhibit biases in study design,unclear inclusion criteria,and intervention protocols.In conclusion,this review underscores the potential of ADSCs in DFU treatment and emphasizes the critical need for further research and refinement of therapeutic approaches,with a focus on improving the quality of future clinical trials to enhance treatment outcomes and advance the field of diabetic wound care. 展开更多
关键词 adipose-derived stem cells Diabetic foot ulcers Wound healing CLINICAL
下载PDF
Roles and application of exosomes in the development,diagnosis and treatment of gastric cancer
16
作者 Xiao-Li Guan Xiao-Ying Guan Zheng-Yi Zhang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期630-642,共13页
As important messengers of intercellular communication,exosomes can regulate local and distant cellular communication by transporting specific exosomal con-tents and can also promote or suppress the development and pr... As important messengers of intercellular communication,exosomes can regulate local and distant cellular communication by transporting specific exosomal con-tents and can also promote or suppress the development and progression of gas-tric cancer(GC)by regulating the growth and proliferation of tumor cells,the tumor-related immune response and tumor angiogenesis.Exosomes transport bioactive molecules including DNA,proteins,and RNA(coding and noncoding)from donor cells to recipient cells,causing reprogramming of the target cells.In this review,we will describe how exosomes regulate the cellular immune respon-se,tumor angiogenesis,proliferation and metastasis of GC cells,and the role and mechanism of exosome-based therapy in human cancer.We will also discuss the potential application value of exosomes as biomarkers in the diagnosis and treat-ment of GC and their relationship with drug resistance. 展开更多
关键词 exosomes Gastric cancer Immune regulation DIAGNOSIS Cancer therapy
下载PDF
Identification of porcine fast/slow myogenic exosomes and their regulatory effects on lipid accumulation in intramuscular adipocytes
17
作者 Tiantian Zhao Tingting Tian +7 位作者 He Yu Chaoyue Cao Ziyi Zhang Zhaozhao He Zeqiang Ma Rui Cai Fengna Li Weijun Pang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1512-1527,共16页
Background Pork quality is affected by the type of muscle fibers, which is closely related to meat color, tenderness and juiciness. Exosomes are tiny vesicles with a diameter of approximately 30–150 nm that are secre... Background Pork quality is affected by the type of muscle fibers, which is closely related to meat color, tenderness and juiciness. Exosomes are tiny vesicles with a diameter of approximately 30–150 nm that are secreted by cells and taken up by recipient cells to mediate communication. Exosome-mediated muscle-fat tissue crosstalk is a newly discovered mechanism that may have an important effect on intramuscular fat deposition and with that on meat quality. Various of adipose tissue-derived exosomes have been discovered and identified, but the identification and function of muscle exosomes, especially porcine fast/slow myotube exosomes, remain unclear. Here, we first isolated and identified exosomes secreted from porcine extensor digitorum longus(EDL) and soleus(SOL), which represent fast and slow muscle, respectively, and further explored their effects on lipid accumulation in longissimus dorsi adipocytes.Results Porcine SOL-derived exosomes(SOL-EXO) and EDL-derived exosomes(EDL-EXO) were first identified and their average particle sizes were approximately 84 nm with double-membrane disc-shapes as observed via transmission electron microscopy and scanning electron microscopy. Moreover, the intramuscular fat content of the SOL was greater than that of the EDL at 180 days of age, because SOL intramuscular adipocytes had a stronger lipid-accumulating capacity than those of the EDL. Raman spectral analysis revealed that SOL-EXO protein content was much greater than that of EDL-EXO. Proteomic sequencing identified 72 proteins that were significantly differentially expressed between SOL-EXO and EDL-EXO, 31 of which were downregulated and 41 of which were upregulated in SOL-EXO.Conclusions Our findings suggest that muscle-fat tissue interactions occur partly via SOL-EXO promoting adipogenic activity of intramuscular adipocytes. 展开更多
关键词 Adipogenesis exosome Extensor digitorum longus Intramuscular adipocyte Muscle-fat tissue interaction Pig SOLEUS
下载PDF
Immunomodulation of adipose-derived mesenchymal stem cells on peripheral blood mononuclear cells in colorectal cancer patients with COVID-19
18
作者 Jun-Feng Wang Xiao-Xia Yang +4 位作者 Jian Zhang Yan Zheng Fu-Qing Zhang Xiao-Feng Shi Yu-Liang Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期2113-2122,共10页
BACKGROUND Accumulating evidence has shown that adipose tissue-derived mesenchymal stem cells(ADSCs)are an effective therapeutic approach for managing coronavirus disease 2019(COVID-19);however,further elucidation is ... BACKGROUND Accumulating evidence has shown that adipose tissue-derived mesenchymal stem cells(ADSCs)are an effective therapeutic approach for managing coronavirus disease 2019(COVID-19);however,further elucidation is required to determine their underlying immunomodulatory effect on the mRNA expression of T helper cell-related transcription factors(TFs)and cytokine release in peripheral blood mononuclear cells(PBMCs).AIM To investigate the impact of ADSCs on the mRNA expression of TFs and cytokine release in PBMCs from colorectal cancer(CRC)patients with severe COVID-19(CRC^(+)patients).METHODS PBMCs from CRC^(+)patients(PBMCs-C+)and age-matched CRC patients(PBMCs-C)were stimulated and cultured in the presence/absence of ADSCs.The mRNA levels of T-box TF TBX21(T-bet),GATA binding protein 3(GATA-3),RAR-related orphan receptor C(RORC),and forkhead box P3(FoxP3)in the PBMCs were determined by reverse transcriptase-polymerase chain reaction.Culture supernatants were evaluated for levels of interferon gamma(IFN-γ),interleukin 4(IL-4),IL-17A,and transforming growth factor beta 1(TGF-β1)using an enzyme-linked immunosorbent assay.RESULTS Compared with PBMCs-C,PBMCs-C+exhibited higher mRNA levels of T-bet and RORC,and increased levels of IFN-γ and IL-17A.Additionally,a significant decrease in FoxP3 mRNA and TGF-β1,as well as an increase in Tbet/GATA-3,RORC/FoxP3,IFN-γ/IL-4,and IL-17A/TGF-β1 ratios were observed in PBMCs-C+.Furthermore,ADSCs significantly induced a functional regulatory T cell(Treg)subset,as evidenced by an increase in FoxP3 mRNA and TGF-β1 release levels.This was accompanied by a significant decrease in the mRNA levels of T-bet and RORC,release of IFN-γ and IL-17A,and T-bet/GATA-3,RORC/FoxP3,IFN-γ/IL-4,and IL-17A/TGF-β1 ratios,compared with the PBMCs-C+alone.CONCLUSION The present in vitro studies showed that ADSCs contributed to the immunosuppressive effects on PBMCs-C+,favoring Treg responses.Thus,ADSC-based cell therapy could be a beneficial approach for patients with severe COVID-19 who fail to respond to conventional therapies. 展开更多
关键词 Colorectal cancer COVID-19 adipose-derived mesenchymal stem cells T helper cell IMMUNOMODULATION
下载PDF
MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation
19
作者 Wenyi Chen Feiyan Lin +10 位作者 Xudong Feng Qigu Yao Yingduo Yu Feiqiong Gao Jiahang Zhou Qiaoling Pan Jian Wu Jinfeng Yang Jiong Yu Hongcui Cao Lanjuan Li 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期119-134,共16页
Primary sclerosing cholangitis(PSC)is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis,with no curative treatment available,and liver transplantation... Primary sclerosing cholangitis(PSC)is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis,with no curative treatment available,and liver transplantation is inevitable for end-stage patients.Human placentalmesenchymal stem cell(hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis,inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease.Here,we prepared hpMSC-derived exosomes(Exo^(MSC))and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2^(−/−)mice and multicellular organoids established from PSC patients.The results showed that Exo^(MSC) ameliorated liver fibrosis in Mdr2^(−/−)mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis,and the percentage of CD4+IL-17A+T cells was reduced both in Exo^(MSC)-treated Mdr2^(−/−)mice(Mdr2^(−/−)-Exo)in vivo and Exo^(MSC)-treated Th17 differentiation progressed in vitro.Furthermore,Exo^(MSC) improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids.Thus,our data demonstrate the antifibrosis effect of Exo^(MSC) in PSC disease by inhibiting Th17 differentiation,and ameliorating the Th17-induced microenvironment,indicating the promising potential therapeutic role of Exo^(MSC) in liver fibrosis of PSC or Th17-related diseases. 展开更多
关键词 Mesenchymal stem cell exosomes Primary sclerosing cholangitis FIBROSIS ORGANOIDS TH17
下载PDF
Mesenchymal stem cells’“garbage bags”at work:Treating radial nerve injury with mesenchymal stem cell-derived exosomes
20
作者 Mazhar Mushtaq Doaa Hussein Zineldeen +1 位作者 Muhammad Abdul Mateen Khawaja Husnain Haider 《World Journal of Stem Cells》 SCIE 2024年第5期467-478,共12页
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul... Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration. 展开更多
关键词 exosomE Mesenchymal stem cells Nerve injury Stem cells SECRETOME Regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部