期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
Adjacent vertex-distinguishing total colorings of K_s∨K_t
1
作者 冯云 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期226-228,共3页
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist... Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined. 展开更多
关键词 adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number joingraph
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
2
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
On the adjacent vertex-distinguishing acyclic edge coloring of some graphs 被引量:5
3
作者 SHIU Wai Chee CHAN Wai Hong +1 位作者 ZHANG Zhong-fu BIAN Liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2011年第4期439-452,共14页
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of ... A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uv∈ E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by X'Aa(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures. 展开更多
关键词 adjacent strong edge coloring adjacent vertex-distinguishing acyclic edge coloring.
下载PDF
Vertex-distinguishing Total Colorings of 2Cn 被引量:6
4
作者 CHEN Xiang-en MA Yan-rong 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第3期323-330,共8页
Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct verti... Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct vertices u and v of V(G), then f is called a vertex- distinguishing total k-coloring of G. The minimum number k for which there exists a vertex- distinguishing total k-coloring of G is called the vertex-distinguishing total chromatic number of G and denoted by Xvt(G). The vertex-disjoint union of two cycles of length n is denoted by 2Cn. We will obtain Xvt(2Cn) in this paper. 展开更多
关键词 GRAPHS total coloring vertex-distinguishing total coloring vertex-distinguish-ing total chromatic number cycle
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
5
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER total coloring vertex-distinguishing total coloring vertex-distinguishing total CHROMATIC number
下载PDF
Adjacent Vertex Distinguishing Total Coloring of M(Tn)
6
作者 GU Yu-ying WANG Shu-dong 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第4期621-624,共4页
A k-proper total coloring of G is called adjacent distinguishing if for any two adjacent vertices have different color sets. According to the property of trees, the adjacent vertex distinguishing total chromatic numbe... A k-proper total coloring of G is called adjacent distinguishing if for any two adjacent vertices have different color sets. According to the property of trees, the adjacent vertex distinguishing total chromatic number will be determined for the Mycielski graphs of trees using the method of induction. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring Mycielski graph
下载PDF
Adjacent Vertex Distinguishing I-total Coloring of Outerplanar Graphs
7
作者 GUO Jing CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2017年第4期382-394,共13页
Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, · · ·, k} such that no adjacent vertices receive the same color and no adjacent ... Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, · · ·, k} such that no adjacent vertices receive the same color and no adjacent edges receive the same color. An Ⅰ-total coloring of a graph G is said to be adjacent vertex distinguishing if for any pair of adjacent vertices u and v of G, we have C_φ(u) = C_φ(v), where C_φ(u) denotes the set of colors of u and its incident edges. The minimum number of colors required for an adjacent vertex distinguishing Ⅰ-total coloring of G is called the adjacent vertex distinguishing Ⅰ-total chromatic number, denoted by χ_at^i(G).In this paper, we characterize the adjacent vertex distinguishing Ⅰ-total chromatic number of outerplanar graphs. 展开更多
关键词 adjacent vertex distinguishing Ⅰ-total coloring outerplanar graphs maximum degree
下载PDF
On adjacent-vertex-distinguishing total coloring of graphs 被引量:175
8
作者 ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China Department of Computer, Lanzhou Normal College, Lanzhou 730070, China +2 位作者 Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China 《Science China Mathematics》 SCIE 2005年第3期289-299,共11页
In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number... In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree. 展开更多
关键词 graph PROPER total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total CHROMATIC number.
原文传递
On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs 被引量:3
9
作者 Jing-wen LI Cong WANG Zhi-wen WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期615-622,共8页
Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, a... Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, and (2) for any i, j = 1, 2,… k, we have ||Ei| |Ej|| ≤ 1, where Ei = {e|e ∈ E(G) and f(e) = i}. χáve (G) = min{k| there exists a k-AVEEC of G} is called the adjacent vertex-distinguishing equitable edge chromatic number of G. In this paper, we obtain the χ áve (G) of some special graphs and present a conjecture. 展开更多
关键词 GRAPH adjacent vertex-distinguishing edge coloring adjacent vertex-distinguishing equitable edge coloring
原文传递
Adjacent strong edge colorings and total colorings of regular graphs 被引量:10
10
作者 WOODALL Douglas R 《Science China Mathematics》 SCIE 2009年第5期973-980,共8页
It is conjectured that X as ′ (G) = X t (G) for every k-regular graph G with no C 5 component (k ? 2). This conjecture is shown to be true for many classes of graphs, including: graphs of type 1; 2-regular, 3-regular... It is conjectured that X as ′ (G) = X t (G) for every k-regular graph G with no C 5 component (k ? 2). This conjecture is shown to be true for many classes of graphs, including: graphs of type 1; 2-regular, 3-regular and (|V(G)| - 2)-regular graphs; bipartite graphs; balanced complete multipartite graphs; k-cubes; and joins of two matchings or cycles. 展开更多
关键词 GRAPH total coloring adjacent strong edge coloring 05C15 68R10
原文传递
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
11
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
On the adjacent-vertex-strongly-distinguishing total coloring of graphs 被引量:79
12
作者 ZHANG ZhongFu CHENG Hui +3 位作者 YAO Bing LI JingWen CHEN XiangEn XU BaoGen 《Science China Mathematics》 SCIE 2008年第3期427-436,共10页
For any vertex u ? V(G), let T N (u) = {u} ∪ {uυ|uυ ? E(G), υ ? υ(G)} ∪ {υ ? υ(G)|uυ ? E(G) and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C f(u) = {f(x) | ... For any vertex u ? V(G), let T N (u) = {u} ∪ {uυ|uυ ? E(G), υ ? υ(G)} ∪ {υ ? υ(G)|uυ ? E(G) and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C f(u) = {f(x) | x ? T N (u)}. For any two adjacent vertices x and y of V(G) such that C f(x) ≠ C f(y), we refer to f as a k-avsdt-coloring of G (“avsdt” is the abbreviation of “ adjacent-vertex-strongly-distinguishing total”). The avsdt-coloring number of G, denoted by χast(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We prove Δ(G) + 1 ? χast(G) ? Δ(G) + 2 for any tree or unique cycle graph G. 展开更多
关键词 simple connected graph proper coloring adjacent-vertex-strongly-distinguishing total coloring 05C78 05C15
原文传递
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
13
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
不含相邻短圈平面图的全染色
14
作者 常建 刘静茹 张帆 《内蒙古师范大学学报(自然科学版)》 CAS 2024年第5期511-516,共6页
基于权转移方法,研究一类平面图的全染色问题。结果表明,如果对于平面图G的每一个顶点v,都存在{3,4,5,6,7}中的两个整数i_(v)和j_(v),使得v不与相邻的i_(v)-圈和j_(v)-圈关联,则全染色猜想对图G成立。
关键词 平面图 全染色 相邻
下载PDF
关于几类特殊图的Mycielski图的邻点可区别全色数(英文) 被引量:13
15
作者 陈祥恩 张忠辅 +1 位作者 晏静之 张贵仓 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期117-122,共6页
设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).... 设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设Xat(G)=min{k|G存在k-AVDTC},则称Xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数. 展开更多
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
若干联图的邻点可区别I-全染色 被引量:9
16
作者 张婷 朱恩强 +1 位作者 刘晓娜 赵双柱 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期267-272,共6页
利用函数构造法和数学归纳法,考虑图P_m∨S_n,F_m∨W_n和W_m∨W_n的邻点可区别I-全染色,给出了它们邻点可区别I-全色数.
关键词 联图 I-全染色 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
P_m∨P_n的邻点可区别全染色 被引量:27
17
作者 陈祥恩 张忠辅 《西北师范大学学报(自然科学版)》 CAS 2005年第1期13-15,共3页
设G是阶数不小于2的简单连通图,G的k 正常全染色f称为是邻点可区别的,如果对G的任意相邻的两顶 点,其点的颜色及关联边的颜色构成的集合不同.这样的k中最小者称为是G的邻点可区别全色数.得到了两条路的 联图的邻点可区别全色数.
关键词 全染色 邻点可区别全染色
下载PDF
若干路的冠图的邻点可区别V-全染色 被引量:9
18
作者 李沐春 王双莉 +1 位作者 张伟东 王立丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期97-99,共3页
根据路与完全图(星、扇、轮、路、圈)构造的冠图的结构性质,应用分析和构造函数法研究了邻点可区别V-全染色,得到了路与完全图(星、扇、轮、路、圈)构造的冠图的邻点可区别V-全色数.
关键词 冠图 邻点可区别V-全染色 邻点可区别V-全色数
下载PDF
关于图K_(2n+1)-E(2K_2)的邻点可区别全色数 被引量:12
19
作者 陈祥恩 张忠辅 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期102-105,共4页
用K2n+1-E(2K2)表示2n+1阶的完全图删掉两条不相邻的边所得到的图,给出了图K2n+1- E(2K2)的邻点可区别全色数.
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
蛛形图的若干染色问题 被引量:9
20
作者 孙亮萍 强会英 孟利冬 《兰州交通大学学报》 CAS 2011年第4期128-130,共3页
给出了蛛形图的邻强边染色、邻点强可区别全染色、点可约全染色以及点边邻点可区别全染色,并得到其相应的色数.
关键词 蛛形图 邻强边染色 邻点强可区别全染色 点可约全染色 邻点可区别点边全染色
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部