期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Adjacent vertex-distinguishing total colorings of K_s∨K_t
1
作者 冯云 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期226-228,共3页
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist... Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined. 展开更多
关键词 adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number joingraph
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
2
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
On the Adjacent Strong Edge Coloring of Halin Graphs 被引量:2
3
作者 刘林忠 李引珍 +1 位作者 张忠辅 王建方 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第2期241-246,共6页
A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong ed... A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong edge coloring of G, is abbreviated k-ASEC: and x'as(G) = min{k|k-ASEC of G} is called the adjacent strong edge chromatic number. In this paper, we study the x'as(G) of Halin graphs with △A(G)≥5. 展开更多
关键词 adjacent strong edge coloring adjacent strong edge chromatics number Halin graph
下载PDF
Adjacent Strong Edge Chromatic Number of Series-Parallel Graphs 被引量:1
4
作者 王淑栋 庞善臣 许进 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第2期267-278,共12页
In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the doub... In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the double inductions and the method of exchanging colors from the aspect of configuration property. For series-parallel graphs of △(G) ≥ 5, △(G) ≤ x'as(G) ≤ △(G) + 1. Moreover, x'as(G) = △(G) + 1 if and only if it has two adjacent vertices of maximum degree, where △(G) and X'as(G) denote the maximum degree and the adjacent strong edge chromatic number of graph G respectively. 展开更多
关键词 series-parallel graph adjacent strong edge coloring adjacent strong edge chromatic number.
下载PDF
An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph 被引量:15
5
作者 Xin-sheng Liu Ming-qiang An Yang Gao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期137-140,共4页
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ... A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△. 展开更多
关键词 adjacent strong edge coloring adjacent vertex distinguishing acyclic edge coloring adjacent vertexdistinguishing acyclic edge chromatic number the LovNsz local lemma
原文传递
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
6
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs 被引量:1
7
作者 Qian WANG Shuang Liang TIAN 《Journal of Mathematical Research and Exposition》 CSCD 2011年第2期366-370,共5页
An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence ... An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path and a path,a path and a wheel,a path and a fan,and a path and a star. 展开更多
关键词 Cartesian product incidence coloring adjacent vertex distinguishing incidence coloring adjacent vertex distinguishing incidence chromatic number
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部