期刊文献+
共找到287篇文章
< 1 2 15 >
每页显示 20 50 100
Smarandachely Adjacent-vertex-distinguishing Proper Edge Coloring ofK4 V Kn 被引量:1
1
作者 CHEN Xiang-en YA O Bing 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第1期76-87,共12页
Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) ... Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn. 展开更多
关键词 complete graphs join of graphs Smarandachely adjacent-vertex-distinguishing proper edge coloring Smarandachely adjacent-vertex-distinguishing proper edge chromatic number
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
2
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph 被引量:15
3
作者 Xin-sheng Liu Ming-qiang An Yang Gao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期137-140,共4页
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ... A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△. 展开更多
关键词 adjacent strong edge coloring adjacent vertex distinguishing acyclic edge coloring adjacent vertexdistinguishing acyclic edge chromatic number the LovNsz local lemma
原文传递
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
4
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS proper TOTAL COLORING vertex-distinguishing TOTAL COLORING vertex-distinguishing TOTAL chromatic number
下载PDF
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
5
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
6
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
On adjacent-vertex-distinguishing total coloring of graphs 被引量:175
7
作者 ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China Department of Computer, Lanzhou Normal College, Lanzhou 730070, China +2 位作者 Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China 《Science China Mathematics》 SCIE 2005年第3期289-299,共11页
In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number... In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree. 展开更多
关键词 graph proper TOTAL coloring adjacent-vertex-distinguishing TOTAL coloring adjacent-vertex-distinguishing TOTAL chromatic number.
原文传递
Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs 被引量:1
8
作者 Qian WANG Shuang Liang TIAN 《Journal of Mathematical Research and Exposition》 CSCD 2011年第2期366-370,共5页
An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence ... An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path and a path,a path and a wheel,a path and a fan,and a path and a star. 展开更多
关键词 Cartesian product incidence coloring adjacent vertex distinguishing incidence coloring adjacent vertex distinguishing incidence chromatic number
下载PDF
关于几类特殊图的Mycielski图的邻点可区别全色数(英文) 被引量:13
9
作者 陈祥恩 张忠辅 +1 位作者 晏静之 张贵仓 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期117-122,共6页
设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).... 设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设Xat(G)=min{k|G存在k-AVDTC},则称Xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数. 展开更多
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
若干联图的邻点可区别I-全染色 被引量:9
10
作者 张婷 朱恩强 +1 位作者 刘晓娜 赵双柱 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期267-272,共6页
利用函数构造法和数学归纳法,考虑图P_m∨S_n,F_m∨W_n和W_m∨W_n的邻点可区别I-全染色,给出了它们邻点可区别I-全色数.
关键词 联图 I-全染色 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
完全图和星的合成的点可区别正常边染色(英文) 被引量:5
11
作者 杨芳 王治文 +1 位作者 陈祥恩 马春燕 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期136-143,共8页
首先,给出了完全图K_p和星S_q的合成的点可区别正常边色数的一个上界:当p≥2,q≥4时,上界是pq+1.再利用正多边形的对称性以及组合分析的方法来构造染色,分别得到了当p=2,q≥4;p≥3,q=4;p是偶数且p≥4,q=5;pq是奇数且p≥3,q≥5时,完全图... 首先,给出了完全图K_p和星S_q的合成的点可区别正常边色数的一个上界:当p≥2,q≥4时,上界是pq+1.再利用正多边形的对称性以及组合分析的方法来构造染色,分别得到了当p=2,q≥4;p≥3,q=4;p是偶数且p≥4,q=5;pq是奇数且p≥3,q≥5时,完全图K_p和星S_q的合成的点可区别正常边色数. 展开更多
关键词 合成 完全图 点可区别正常边染色 点可区别正常边色数
下载PDF
C_m·F_n的邻点可区别边色数 被引量:7
12
作者 李敬文 刘君 +3 位作者 包世堂 任志国 赵传成 张忠辅 《兰州交通大学学报》 CAS 2004年第4期128-130,共3页
Fn表示阶为n+1的扇,当m个Fn的扇心连成圈时,用Cm·Fn表示.设Cm=u1u2…unv1,V(Cm·Fn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Fn)=E(Cm)∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{vijvi(j+1)|i=1,2,…,m;j=1,2,…,n... Fn表示阶为n+1的扇,当m个Fn的扇心连成圈时,用Cm·Fn表示.设Cm=u1u2…unv1,V(Cm·Fn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Fn)=E(Cm)∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{vijvi(j+1)|i=1,2,…,m;j=1,2,…,n-1}.研究Cm·Fn的邻点可区别的边色数. 展开更多
关键词 邻点可区别的边色数
下载PDF
若干路的冠图的邻点可区别V-全染色 被引量:9
13
作者 李沐春 王双莉 +1 位作者 张伟东 王立丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期97-99,共3页
根据路与完全图(星、扇、轮、路、圈)构造的冠图的结构性质,应用分析和构造函数法研究了邻点可区别V-全染色,得到了路与完全图(星、扇、轮、路、圈)构造的冠图的邻点可区别V-全色数.
关键词 冠图 邻点可区别V-全染色 邻点可区别V-全色数
下载PDF
一类2维广义格子图的邻点可区别全染色 被引量:6
14
作者 刘信生 缑艳 +1 位作者 姚兵 刘元元 《兰州理工大学学报》 CAS 北大核心 2014年第2期145-149,共5页
定义一类2维广义格子图H2(G,n,m;k1,k2).且通过从图的结构出发,利用构造染色的方法,得到图H2(C5,n,m;5,5)的邻点可区别全色数.
关键词 格子图 邻点可区别全染色 邻点可区别全色数
下载PDF
P_m∨C_n的点可区别边色数 被引量:4
15
作者 李敬文 徐保根 +3 位作者 李沐春 张忠辅 赵传成 任志国 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第8期24-27,30,共5页
研究了路和圈的联图的点可区别的边染色,得到了其点可区别的边色数。
关键词 联图 点可区别边色数
下载PDF
几类图的相邻顶点可区别的全染色 被引量:7
16
作者 孙磊 孙艳丽 董海燕 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期1-4,共4页
给出了几类特殊图相邻顶点可区别的全色数,如双路间和二部(V1,V2)间叠加匹配形成的系列图、双圈(prism)、双轮.并得到边连通度λ(G)=1的图相邻顶点可区别的全染色的性质.
关键词 相邻顶点可区别的全染色 相邻顶点可区别的全色数 匹配 边连通度
下载PDF
图的邻点可区别Ⅵ-全色数的一个上界 被引量:8
17
作者 刘信生 王志强 苏旺辉 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期81-83,92,共4页
根据图的邻点可区别Ⅵ-全染色的定义,用概率方法研究了一般图的邻点可区别的Ⅵ-全色数的一个上界.如果δ150√ln,则χviat(G)(G)+1+2√ln,这里δ(G)表示图G的最小度,(G)表示图G的最大度.
关键词 概率方法 邻点可区别Ⅵ-全染色 邻点可区别Ⅵ-全色数 Lovász局部引理
下载PDF
P_m∨P_n的点可区别边色数 被引量:7
18
作者 王治文 张忠辅 闫丽宏 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期100-101,共2页
研究了Pm ∨ Pn的点可区别边染色,并得到了Pm ∨ Pn的点可区别边色数.
关键词 联图 点可区别边色数
下载PDF
图P_m V W_n的点可区别边色数 被引量:8
19
作者 马刚 马少仙 张忠辅 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期103-106,共4页
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区别边色数.得到了路与轮的联图的点可区别边色数.
关键词 联图 点可区别边色数
下载PDF
若干倍图的邻点可区别均匀全染色 被引量:20
20
作者 马刚 张忠辅 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1160-1164,共5页
研究一些倍图的邻点可区别均匀全染色(AVDETC),利用构造法和匹配法给出了偶阶完全图、偶阶圈、路、星和轮的倍图的邻点可区别均匀全色数,并验证了它们满足邻点可区别均匀全染色猜想(AVDETCC).
关键词 倍图 邻点可区别均匀全染色 邻点可区别均匀全色数
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部