This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the...This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.展开更多
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con...This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.展开更多
Melt ponds significantly affect Arctic sea ice thermodynamic processes.The melt pond parameterization scheme in the Los Alamos sea ice model(CICE6.0) can predict the volume,area fraction(the ratio between melt pond ar...Melt ponds significantly affect Arctic sea ice thermodynamic processes.The melt pond parameterization scheme in the Los Alamos sea ice model(CICE6.0) can predict the volume,area fraction(the ratio between melt pond area to sea ice area in a model grid),and depth of melt ponds.However,this scheme has some uncertain parameters that affect melt pond simulations.These parameters could be determined through a conventional parameter estimation method,which requires a large number of sensitivity simulations.The adjoint model can calculate the parameter sensitivity efficiently.In the present research,an adjoint model was developed for the CESM(Community Earth System Model) melt pond scheme.A melt pond parameter estimation algorithm was then developed based on the CICE6.0 sea ice model,melt pond adjoint model,and L-BFGS(Limited-memory Broyden-Fletcher-Goldfard-Shanno) minimization algorithm.The parameter estimation algorithm was verified under idealized conditions.By using MODIS(Moderate Resolution Imaging Spectroradiometer)melt pond fraction observation as a constraint and the developed parameter estimation algorithm,the melt pond aspect ratio parameter in CESM scheme,which is defined as the ratio between pond depth and pond area fraction,was estimated every eight days during summertime for two different regions in the Arctic.One region was covered by multi-year ice(MYI) and the other by first-year ice(FYI).The estimated parameter was then used in simulations and the results show that:(1) the estimated parameter varies over time and is quite different for MYI and FYI;(2) the estimated parameter improved the simulation of the melt pond fraction.展开更多
Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary ...Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers. Key words Variational data assimilation - Adjoint model - Over-specified partial boundary condition This research work is sponsored by the National Key Programme for Developing Basic Sciences (G1998040907), the Project of Natural Science Foundation of Jiangsu Province (BK99020), the President Foundation of Nanjing University (985) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.展开更多
The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows lon...The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4—D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.展开更多
Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of s...Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of success is achieved, but the most serious failure is that the formation and displacement of the simulated vortex in its early phase are about fourteen hours later than the observed vortex. Considering the relatively sparse data on the mesoscale vortex and in an attempt to understand the cause of the forecast failure, an adjoint model is used to examine the sensitivity of the southwest vortex to perturbations of initial conditions. The adjoint sensitivity indicates how small perturbations of model variables at the initial time in the model domain can influence the vortex. A large sensitivity for zonal wind is located under 400 hPa, a large sensitivity for meridional wind is located under 500 hPa, a large sensitivity for temperature is located between 500 and 900 hPa, and almost all of the large sensitivity areas are located in the southwestern area. Based on the adjoint sensitivity results, perturbations are added to initial conditions to improve the simulation of the southwest vortex. The results show that the initial conditions with perturbations can successfully simulate the formation and displacement of the vortex; the wind perturbations added to the initial conditions appear to be a cyclone circulation under the middle level of the atmosphere in the southwestern area with an anticyclone circulation to its southwest; a water vapor perturbation added to initial conditions can strengthen the vortex and the speed of its displacement.展开更多
The singular vector(SV)initial perturbation method can capture the fastest-growing initial perturbation in a tangent linear model(TLM).Based on the global tangent linear and adjoint model of GRAPES-GEPS(Global/Regiona...The singular vector(SV)initial perturbation method can capture the fastest-growing initial perturbation in a tangent linear model(TLM).Based on the global tangent linear and adjoint model of GRAPES-GEPS(Global/Regional Assimilation and Prediction System-Global Ensemble Prediction System),some experiments were carried out to analyze the structure of the moist SVs from the perspectives of the energy norm,energy spectrum,and vertical structure.The conclusions are as follows:The evolution of the SVs is synchronous with that of the atmospheric circulation,which is flowdependent.The moist and dry SVs are located in unstable regions at mid-to-high latitudes,but the moist SVs are wider,can contain more small-and medium-scale information,and have more energy than the dry SVs.From the energy spectrum analysis,the energy growth caused by the moist SVs is reflected in the relatively small-scale weather system.In addition,moist SVs can generate perturbations associated with large-scale condensation and precipitation,which is not true for dry SVs.For the ensemble forecasts,the average anomaly correlation coefficient of large-scale circulation is better for the forecast based on moist SVs in the Northern Hemisphere,and the low-level variables forecasted by the moist SVs are also improved,especially in the first 72 h.In addition,the moist SVs respond better to short-term precipitation according to statistical precipitation scores based on 10 cases.The inclusion of the large-scale condensation process in the calculation of SVs can improve the short-term weather prediction effectively.展开更多
文摘This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.
文摘This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.
基金funded by the National Key R&D Program of China (Grant No.2018YFA0605904)。
文摘Melt ponds significantly affect Arctic sea ice thermodynamic processes.The melt pond parameterization scheme in the Los Alamos sea ice model(CICE6.0) can predict the volume,area fraction(the ratio between melt pond area to sea ice area in a model grid),and depth of melt ponds.However,this scheme has some uncertain parameters that affect melt pond simulations.These parameters could be determined through a conventional parameter estimation method,which requires a large number of sensitivity simulations.The adjoint model can calculate the parameter sensitivity efficiently.In the present research,an adjoint model was developed for the CESM(Community Earth System Model) melt pond scheme.A melt pond parameter estimation algorithm was then developed based on the CICE6.0 sea ice model,melt pond adjoint model,and L-BFGS(Limited-memory Broyden-Fletcher-Goldfard-Shanno) minimization algorithm.The parameter estimation algorithm was verified under idealized conditions.By using MODIS(Moderate Resolution Imaging Spectroradiometer)melt pond fraction observation as a constraint and the developed parameter estimation algorithm,the melt pond aspect ratio parameter in CESM scheme,which is defined as the ratio between pond depth and pond area fraction,was estimated every eight days during summertime for two different regions in the Arctic.One region was covered by multi-year ice(MYI) and the other by first-year ice(FYI).The estimated parameter was then used in simulations and the results show that:(1) the estimated parameter varies over time and is quite different for MYI and FYI;(2) the estimated parameter improved the simulation of the melt pond fraction.
基金the National Key Programme for Developing Basic Sciences(G1998040907)the Project of Natural Science Foundation of Jiangsu Pr
文摘Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers. Key words Variational data assimilation - Adjoint model - Over-specified partial boundary condition This research work is sponsored by the National Key Programme for Developing Basic Sciences (G1998040907), the Project of Natural Science Foundation of Jiangsu Province (BK99020), the President Foundation of Nanjing University (985) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
基金Acknowledgments. The authors would like to thank Prof. Z. Yuan for her numerous suggestions in the writing of this paper. This work is supported by the National Natural Science Foundation of China (Grant No.40176009), the National Key Programme for Devel
文摘The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4—D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60970004No.60743010)+3 种基金国家教育部博士点基金(No.20093704110002)山东省自然科学基金(No.ZZ2008G02No.ZR2010QL01)山东省分布式计算机软件新技术重点实验室项目
文摘Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of success is achieved, but the most serious failure is that the formation and displacement of the simulated vortex in its early phase are about fourteen hours later than the observed vortex. Considering the relatively sparse data on the mesoscale vortex and in an attempt to understand the cause of the forecast failure, an adjoint model is used to examine the sensitivity of the southwest vortex to perturbations of initial conditions. The adjoint sensitivity indicates how small perturbations of model variables at the initial time in the model domain can influence the vortex. A large sensitivity for zonal wind is located under 400 hPa, a large sensitivity for meridional wind is located under 500 hPa, a large sensitivity for temperature is located between 500 and 900 hPa, and almost all of the large sensitivity areas are located in the southwestern area. Based on the adjoint sensitivity results, perturbations are added to initial conditions to improve the simulation of the southwest vortex. The results show that the initial conditions with perturbations can successfully simulate the formation and displacement of the vortex; the wind perturbations added to the initial conditions appear to be a cyclone circulation under the middle level of the atmosphere in the southwestern area with an anticyclone circulation to its southwest; a water vapor perturbation added to initial conditions can strengthen the vortex and the speed of its displacement.
基金the National Key R&D Program of China(Grant Nos.2017YFC1502102 and 2017YFC1501803).
文摘The singular vector(SV)initial perturbation method can capture the fastest-growing initial perturbation in a tangent linear model(TLM).Based on the global tangent linear and adjoint model of GRAPES-GEPS(Global/Regional Assimilation and Prediction System-Global Ensemble Prediction System),some experiments were carried out to analyze the structure of the moist SVs from the perspectives of the energy norm,energy spectrum,and vertical structure.The conclusions are as follows:The evolution of the SVs is synchronous with that of the atmospheric circulation,which is flowdependent.The moist and dry SVs are located in unstable regions at mid-to-high latitudes,but the moist SVs are wider,can contain more small-and medium-scale information,and have more energy than the dry SVs.From the energy spectrum analysis,the energy growth caused by the moist SVs is reflected in the relatively small-scale weather system.In addition,moist SVs can generate perturbations associated with large-scale condensation and precipitation,which is not true for dry SVs.For the ensemble forecasts,the average anomaly correlation coefficient of large-scale circulation is better for the forecast based on moist SVs in the Northern Hemisphere,and the low-level variables forecasted by the moist SVs are also improved,especially in the first 72 h.In addition,the moist SVs respond better to short-term precipitation according to statistical precipitation scores based on 10 cases.The inclusion of the large-scale condensation process in the calculation of SVs can improve the short-term weather prediction effectively.