Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.