Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effective...Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems.展开更多
A novel adjusting method for improving gas turbine(GT)efficiency and surge margin(SM)under partload conditions is proposed.This method adopts the inlet air heating technology,which uses the waste heat of lowgrade heat...A novel adjusting method for improving gas turbine(GT)efficiency and surge margin(SM)under partload conditions is proposed.This method adopts the inlet air heating technology,which uses the waste heat of lowgrade heat source and the inlet guide vane(IGV)opening adjustment.Moreover,the regulation rules of the compressor inlet air temperature and the IGV opening are studied comprehensively to optimize GT performance.A model and calculation method for an equilibrium running line is adopted based on the characteristic curves of the compressor and turbine.The equilibrium running lines calculated through the calculation method involve three part-load conditions and three IGVopenings with different inlet air temperatures.The results show that there is an optimal matching relationship between IGV opening and inlet air temperature.For the best GT performance of a given load,the IGV could be adjusted according to inlet air temperature.In addition,inlet air heating has a considerable potential for the improvement of part-load performance of GT due to the increase in compressor efficiency,combustion efficiency,and turbine efficiency as well as turbine inlet temperature,when inlet air temperature is lower than the optimal value with different IGV openings.Further,when the IGV is in a full opening state and an optimal inlet air temperature is achieved by using the inlet air heating technology,GT efficiency and SM can be obviously higher than other IGVopenings.The IGV can be left unadjusted,even when the load is as low as 50%.These findings indicate that inlet air heating has a great potential to replace the IGV to regulate load because GT efficiency and SM can be remarkably improved,which is different from the traditional viewpoints.展开更多
分析了重型燃气轮机负荷特性的影响因素,提出了研究重型燃气轮机负荷特性的技术路线。基于此,针对某M701F型燃气轮机,以国际标准化组织(International Organization for Standardization,ISO)的标准条件为基准,由机组的在线运行数据获...分析了重型燃气轮机负荷特性的影响因素,提出了研究重型燃气轮机负荷特性的技术路线。基于此,针对某M701F型燃气轮机,以国际标准化组织(International Organization for Standardization,ISO)的标准条件为基准,由机组的在线运行数据获得其负荷特性曲线,并建立负荷特性的数学模型。考察该燃气轮机6 940组实际数据,得出结论:当折算基准功率不小于18MW时,其负荷特性数学模型的最大相对误差不超过5.73%。展开更多
基金financial support from the Fundamental Research Project in the Chinese National Sciences and Technology Major Project (Grant No.2017-1-0002-0002)。
文摘Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems.
基金supported by Project 2017-II-0007-0021 of the National Science and Technology Major Project of China.
文摘A novel adjusting method for improving gas turbine(GT)efficiency and surge margin(SM)under partload conditions is proposed.This method adopts the inlet air heating technology,which uses the waste heat of lowgrade heat source and the inlet guide vane(IGV)opening adjustment.Moreover,the regulation rules of the compressor inlet air temperature and the IGV opening are studied comprehensively to optimize GT performance.A model and calculation method for an equilibrium running line is adopted based on the characteristic curves of the compressor and turbine.The equilibrium running lines calculated through the calculation method involve three part-load conditions and three IGVopenings with different inlet air temperatures.The results show that there is an optimal matching relationship between IGV opening and inlet air temperature.For the best GT performance of a given load,the IGV could be adjusted according to inlet air temperature.In addition,inlet air heating has a considerable potential for the improvement of part-load performance of GT due to the increase in compressor efficiency,combustion efficiency,and turbine efficiency as well as turbine inlet temperature,when inlet air temperature is lower than the optimal value with different IGV openings.Further,when the IGV is in a full opening state and an optimal inlet air temperature is achieved by using the inlet air heating technology,GT efficiency and SM can be obviously higher than other IGVopenings.The IGV can be left unadjusted,even when the load is as low as 50%.These findings indicate that inlet air heating has a great potential to replace the IGV to regulate load because GT efficiency and SM can be remarkably improved,which is different from the traditional viewpoints.
文摘分析了重型燃气轮机负荷特性的影响因素,提出了研究重型燃气轮机负荷特性的技术路线。基于此,针对某M701F型燃气轮机,以国际标准化组织(International Organization for Standardization,ISO)的标准条件为基准,由机组的在线运行数据获得其负荷特性曲线,并建立负荷特性的数学模型。考察该燃气轮机6 940组实际数据,得出结论:当折算基准功率不小于18MW时,其负荷特性数学模型的最大相对误差不超过5.73%。