We propose a system for achieving some adjustable quantum coherence effects, including the normal-mode splitting(NMS), the optomechanically induced transparency(OMIT), and the optomechanically induced absorption(...We propose a system for achieving some adjustable quantum coherence effects, including the normal-mode splitting(NMS), the optomechanically induced transparency(OMIT), and the optomechanically induced absorption(OMIA). In this system, two tunnel-coupled optomechanical cavities are each driven by a coupling field and coupled to an atomic ensemble.Besides, one of the cavities is also injected with a probe field. When the system works under different conditions, we can obtain the NMS, the OMIT, and the OMIA, respectively. These effects can be flexibly adjusted by the tunnel coupling between the two cavities, the power of the coupling lasers, and the coupling strength between the atomic ensembles and the cavity fields. Furthermore, we can realize the OMIT even if the oscillating mirrors have relatively larger decay rates.展开更多
A nonlinear optical loop mirror(NOLM)-based linear cavity switchable multi-wavelength erbium-doped fiber(EDF) laser is proposed and experimentally demonstrated.Due to the characteristics of the intensity-dependent tra...A nonlinear optical loop mirror(NOLM)-based linear cavity switchable multi-wavelength erbium-doped fiber(EDF) laser is proposed and experimentally demonstrated.Due to the characteristics of the intensity-dependent transmissivity,the NOLM can effectively mitigate the mode competition of the homogenous broadening gain medium,so that the multi-wavelength lasing can be achieved at room temperature.By adjusting the states of the polarization controllers(PCs),the number of the lasing wavelengths in the proposed laser can be adjusted flexibly from 11 to 13 with a wavelength spacing of 0.4 nm around the wavelength of 1 530 nm.展开更多
In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We...In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We can observe that the metamaterial-based filter possesses a band-pass transmission when the electrical field is along y direction, and it possesses a low-pass transmission when the electrical field is along x direction. Our results demonstrate that the proposed filter can realize the switching between band-pass effect and low-pass effect by only changing the polarization direction of the incident electromagnetic wave. Moreover, the calculated surface current distributions are also used to analyze the switchable mechanism of the THz metamatrial filter. Therefore, the proposed THz wave filter has a potential application in THz wave communication systems.展开更多
A setup for the generation of arbitrary vector beams is proposed. The setup mainly consists of a spatial light modulator(SLM), an angle-adjustable polarization beam splitter modulator, and a spatial filtering imagin...A setup for the generation of arbitrary vector beams is proposed. The setup mainly consists of a spatial light modulator(SLM), an angle-adjustable polarization beam splitter modulator, and a spatial filtering imaging system. Compared with the system using a birefringent beam splitter with a non-adjustable splitting angle,the polarization splitting angle of the improved setup can be adjusted by slightly rotating the related mirrors,which will bring more convenience when different wavelengths and different pixel sizes of SLMs are involved.The experimental results also demonstrate that the setup possesses a good polarization-selective imaging ability, which reveals that the setup may also be useful in polarization-selective spatial filtering imaging and polarization-encoded encryption.展开更多
A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third F...A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574092,61378012,91121023,and 60978009)the National Basic Research Program of China(Grant No.2013CB921804)the Innovative Research Team in University,China(Grant No.IRT1243)
文摘We propose a system for achieving some adjustable quantum coherence effects, including the normal-mode splitting(NMS), the optomechanically induced transparency(OMIT), and the optomechanically induced absorption(OMIA). In this system, two tunnel-coupled optomechanical cavities are each driven by a coupling field and coupled to an atomic ensemble.Besides, one of the cavities is also injected with a probe field. When the system works under different conditions, we can obtain the NMS, the OMIT, and the OMIA, respectively. These effects can be flexibly adjusted by the tunnel coupling between the two cavities, the power of the coupling lasers, and the coupling strength between the atomic ensembles and the cavity fields. Furthermore, we can realize the OMIT even if the oscillating mirrors have relatively larger decay rates.
基金supported by the National Natural Science Foundation of China(No.61275059)the Natural Science Foundation of Guangdong Province in China(No.10151063101000014)
文摘A nonlinear optical loop mirror(NOLM)-based linear cavity switchable multi-wavelength erbium-doped fiber(EDF) laser is proposed and experimentally demonstrated.Due to the characteristics of the intensity-dependent transmissivity,the NOLM can effectively mitigate the mode competition of the homogenous broadening gain medium,so that the multi-wavelength lasing can be achieved at room temperature.By adjusting the states of the polarization controllers(PCs),the number of the lasing wavelengths in the proposed laser can be adjusted flexibly from 11 to 13 with a wavelength spacing of 0.4 nm around the wavelength of 1 530 nm.
基金supported by the Major State Basic Research Development Program of China(No.2010CB934104)the Science and Technology Research Funding of State Cultural Relics Bureau Cultural Relics(No.20110135)+1 种基金the National Special Fund for the Development of Major Research Equipment and Instruments(No.2012YQ14000508)"985 Project"(No.0301-01402904)
文摘In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We can observe that the metamaterial-based filter possesses a band-pass transmission when the electrical field is along y direction, and it possesses a low-pass transmission when the electrical field is along x direction. Our results demonstrate that the proposed filter can realize the switching between band-pass effect and low-pass effect by only changing the polarization direction of the incident electromagnetic wave. Moreover, the calculated surface current distributions are also used to analyze the switchable mechanism of the THz metamatrial filter. Therefore, the proposed THz wave filter has a potential application in THz wave communication systems.
基金supported by the National Natural Science Foundation of China under Grant No.11474186
文摘A setup for the generation of arbitrary vector beams is proposed. The setup mainly consists of a spatial light modulator(SLM), an angle-adjustable polarization beam splitter modulator, and a spatial filtering imaging system. Compared with the system using a birefringent beam splitter with a non-adjustable splitting angle,the polarization splitting angle of the improved setup can be adjusted by slightly rotating the related mirrors,which will bring more convenience when different wavelengths and different pixel sizes of SLMs are involved.The experimental results also demonstrate that the setup possesses a good polarization-selective imaging ability, which reveals that the setup may also be useful in polarization-selective spatial filtering imaging and polarization-encoded encryption.
基金supported by the National Natural Science Foundation of China(No.60777020)the Hubei Provincial Natural Science Foundation of China(No.2008CDB317)the Innovation Project of Hubei Provincial Department of Education of China(No.2012344/104892013043)
文摘A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.