Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical sig...Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical signs like redness,swelling,pain,and increased body temperature.Immune cells,notably neutrophils and macrophages,play key roles in orchestrating this response.The delicate balance between proinflammatory and anti-inflammatory mediators,including cytokines and chemokines,regulates the inflammatory cascade.While acute inflammation is crucial for tissue repair,chronic inflammation may indicate an imbalance,contributing to conditions like autoimmune diseases.Understanding these mechanisms is vital for developing therapeutic strategies and managing chronic diseases.展开更多
Objective To observe the influence of adrenomedullin (ADM) on neuron apoptosis, infarction volume of brain, and the expression of early growth response 1 (Egr-1) mRNA in ischemia-reperfusion rats. Methods The arte...Objective To observe the influence of adrenomedullin (ADM) on neuron apoptosis, infarction volume of brain, and the expression of early growth response 1 (Egr-1) mRNA in ischemia-reperfusion rats. Methods The arteria cerebri media was tied for 2 h to construct the ischemia model. Infarction volume was detected by triphenltetrazolium chloride (T'I'C) staining, neuronal apoptosis and necrosis was detected with terminal deoxynucleotidyl transferase nick labeling (TUNEL) method, and the Egr-1 mRNA expression was examined by in situ hybridization (ISH). Results Infarction volume after ischemia-reperfusion is (269 ± 20) mm^3. Infarction volume after injection of ADM through different ways are femoral vein (239 ± 17) mm^3 (decreased by 11.2%), arteria carotis (214 ± 14) mm^3 (by 20.4%) and lateral cerebral ventricle (209 ± 13) mm^3 (by 22.3%), respectively. The results indicate that injecting ADM through arteria carotis and lateral cerebral ventricle is much more effective than it through femoral vein (P 〈 0.05). The TUNEL-positive cells in cerebral cortex or hippocampus are few in the sham operation group, but much more in the ischemia-reperfusion group. After being supplied with ADM, especially through arteria carotis interna or lateral cerebral ventricle way, the TUNEL-positive cells decreased obviously. Expression of Egr- 1 mRNA was low in the cerebral cortex of the sham operation group rats, enhanced in the ischemia and reperfusion group rats, and enhanced markedly after treatment with ADM, especially through arteria carotis interna or lateral cerebral ventricle way (P 〈 0.01). Conclusion Injection of ADM through different ways could alleviate neural dysfunction, decrease neuron apoptosis and brain infarction volume, and increase the expression of Egr- 1 mRNA.展开更多
Interm ed in(IMD)/adrenom edu llin-2(ADM2)是最近克隆出来的降钙素基因相关肽(CGRP)超家族成员,其结构类似于CGRP、肾上腺髓质素,通过降钙素受体样受体/受体活性修饰蛋白起作用。IMD/ADM2是一种内源性心脏-肾脏保护因子,作为循环激...Interm ed in(IMD)/adrenom edu llin-2(ADM2)是最近克隆出来的降钙素基因相关肽(CGRP)超家族成员,其结构类似于CGRP、肾上腺髓质素,通过降钙素受体样受体/受体活性修饰蛋白起作用。IMD/ADM2是一种内源性心脏-肾脏保护因子,作为循环激素和旁/自分泌因子在多种组织中发挥广泛生物学功能,具有降低血压、扩张冠脉、抗心脏缺血/再灌注损伤、调节水和电解质平衡、调节垂体激素分泌等生物学效应。展开更多
OBJECTIVE: To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). METHODS: A monoclonal antibody against AM developed by ...OBJECTIVE: To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). METHODS: A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry. The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC) and MsC were investigated by Northern blot assay, and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H]thymidine incorporation as an index. RESULTS: A specific monoclonal antibody against AM was succesfully developed. AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells), some cortical proximal tubules, medullary collecting duct cells, interstitial cells, vascular smooth muscle cells and endothelial cells. Northern blot assay showed that AM mRNA was expressed only on cultured GEC, but not on MsC, however, AM receptor CRLR mRNA was only expressed on MsC. GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect. CONCLUSION: AM produced by GEC inhibits the proliferation of MsC, which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.展开更多
Adrenomedullin,a peptide with multiple physiological functions in nervous system injury and disease,has aroused the interest of researchers.This review summarizes the role of adrenomedullin in neuropathological disord...Adrenomedullin,a peptide with multiple physiological functions in nervous system injury and disease,has aroused the interest of researchers.This review summarizes the role of adrenomedullin in neuropathological disorders,including pathological pain,brain injury and nerve regeneration,and their treatment.As a newly characterized pronociceptive mediator,adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain,cancer pain,neuropathic pain induced by spinal nerve injury and diabetic neuropathy.Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance.Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury.Additionally,adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions.Therefore,adrenomedullin is an important participant in nervous system diseases.展开更多
文摘Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical signs like redness,swelling,pain,and increased body temperature.Immune cells,notably neutrophils and macrophages,play key roles in orchestrating this response.The delicate balance between proinflammatory and anti-inflammatory mediators,including cytokines and chemokines,regulates the inflammatory cascade.While acute inflammation is crucial for tissue repair,chronic inflammation may indicate an imbalance,contributing to conditions like autoimmune diseases.Understanding these mechanisms is vital for developing therapeutic strategies and managing chronic diseases.
文摘Objective To observe the influence of adrenomedullin (ADM) on neuron apoptosis, infarction volume of brain, and the expression of early growth response 1 (Egr-1) mRNA in ischemia-reperfusion rats. Methods The arteria cerebri media was tied for 2 h to construct the ischemia model. Infarction volume was detected by triphenltetrazolium chloride (T'I'C) staining, neuronal apoptosis and necrosis was detected with terminal deoxynucleotidyl transferase nick labeling (TUNEL) method, and the Egr-1 mRNA expression was examined by in situ hybridization (ISH). Results Infarction volume after ischemia-reperfusion is (269 ± 20) mm^3. Infarction volume after injection of ADM through different ways are femoral vein (239 ± 17) mm^3 (decreased by 11.2%), arteria carotis (214 ± 14) mm^3 (by 20.4%) and lateral cerebral ventricle (209 ± 13) mm^3 (by 22.3%), respectively. The results indicate that injecting ADM through arteria carotis and lateral cerebral ventricle is much more effective than it through femoral vein (P 〈 0.05). The TUNEL-positive cells in cerebral cortex or hippocampus are few in the sham operation group, but much more in the ischemia-reperfusion group. After being supplied with ADM, especially through arteria carotis interna or lateral cerebral ventricle way, the TUNEL-positive cells decreased obviously. Expression of Egr- 1 mRNA was low in the cerebral cortex of the sham operation group rats, enhanced in the ischemia and reperfusion group rats, and enhanced markedly after treatment with ADM, especially through arteria carotis interna or lateral cerebral ventricle way (P 〈 0.01). Conclusion Injection of ADM through different ways could alleviate neural dysfunction, decrease neuron apoptosis and brain infarction volume, and increase the expression of Egr- 1 mRNA.
文摘Interm ed in(IMD)/adrenom edu llin-2(ADM2)是最近克隆出来的降钙素基因相关肽(CGRP)超家族成员,其结构类似于CGRP、肾上腺髓质素,通过降钙素受体样受体/受体活性修饰蛋白起作用。IMD/ADM2是一种内源性心脏-肾脏保护因子,作为循环激素和旁/自分泌因子在多种组织中发挥广泛生物学功能,具有降低血压、扩张冠脉、抗心脏缺血/再灌注损伤、调节水和电解质平衡、调节垂体激素分泌等生物学效应。
文摘OBJECTIVE: To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). METHODS: A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry. The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC) and MsC were investigated by Northern blot assay, and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H]thymidine incorporation as an index. RESULTS: A specific monoclonal antibody against AM was succesfully developed. AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells), some cortical proximal tubules, medullary collecting duct cells, interstitial cells, vascular smooth muscle cells and endothelial cells. Northern blot assay showed that AM mRNA was expressed only on cultured GEC, but not on MsC, however, AM receptor CRLR mRNA was only expressed on MsC. GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect. CONCLUSION: AM produced by GEC inhibits the proliferation of MsC, which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.
基金supported by the National Natural Science Foundation of China,No.81400922(to DMW),81571084the Natural Science Foundation of Fujian Province of China,No.2018J01813(to DMW)the College of Life Sciences of Fujian Normal University of China,No.FZSKG2018016(to DMW)
文摘Adrenomedullin,a peptide with multiple physiological functions in nervous system injury and disease,has aroused the interest of researchers.This review summarizes the role of adrenomedullin in neuropathological disorders,including pathological pain,brain injury and nerve regeneration,and their treatment.As a newly characterized pronociceptive mediator,adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain,cancer pain,neuropathic pain induced by spinal nerve injury and diabetic neuropathy.Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance.Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury.Additionally,adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions.Therefore,adrenomedullin is an important participant in nervous system diseases.