With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environmen...With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.展开更多
基于试验数据,利用扩展有限元方法(extended finite element method,XFEM)和内聚力模型(cohesive zone model,CZM),对20Cr2Ni3钢顶头表面氧化膜的断裂行为进行了数值分析,研究了氧化膜受力方向和孔洞对裂纹生长行为的影响。结果表明:氧...基于试验数据,利用扩展有限元方法(extended finite element method,XFEM)和内聚力模型(cohesive zone model,CZM),对20Cr2Ni3钢顶头表面氧化膜的断裂行为进行了数值分析,研究了氧化膜受力方向和孔洞对裂纹生长行为的影响。结果表明:氧化膜受力方向影响裂纹扩展路径,外层氧化膜裂纹尖端的J积分和应力强度因子K_I随着θ角(受力方向与氧化膜的夹角)的增大而减小,当θ角增大到90°时裂纹停止生长;外层氧化膜上孔洞使得裂纹尖端的J积分和应力强度因子K_I减小。同时,孔洞的存在使得外力传递到内层氧化膜时产生应力集中和偏移,导致内层裂纹受力不均,减小了受力方向对内层裂纹生长的影响。展开更多
以硝酸镍为镍源、酸/碱性硅溶胶为硅源,采用共沉淀法制备了2种Ni/SiO_(2)催化剂。采用固定床反应器,评价Ni/SiO_(2)催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N_(2)等温吸附-脱附、H_(2)-TPR...以硝酸镍为镍源、酸/碱性硅溶胶为硅源,采用共沉淀法制备了2种Ni/SiO_(2)催化剂。采用固定床反应器,评价Ni/SiO_(2)催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N_(2)等温吸附-脱附、H_(2)-TPR、NH3-TPD、XPS、FTIR和TEM对催化剂进行了表征。考察了硅溶胶的酸碱性对Ni/SiO_(2)催化剂结构及性能的影响。结果表明,以酸性硅溶胶为硅源制备的Ni/SiO_(2)催化剂以弱酸中心酸量为主且存在中强酸中心,比表面积、平均孔径大,因而该催化剂加氢活性和2-MTHF的选择性较高。Ni/SiO_(2)催化剂稳定性良好,在最优反应条件〔温度90℃、H_(2)压力2 MPa、质量空速4.4 g 2-MF/(g催化剂·h)、H_(2)与2-MF物质的量之比为4∶1〕下进行催化剂稳定性测试(200 h),2-MF的转化率达到99.8%,2-MTHF的选择性均保持在97.5%左右。展开更多
基金supported by the National Natural Science Foundation of China (No.52364022)the Natural Science Foundation of Guangxi Province,China (Nos.2023JJA160192 and 2021GXNSFAA220096)+1 种基金the Guangxi Science and Technology Major Project,China (No.AA23073018)the Guangxi Chongzuo Science and Technology Plan,China (No.2023ZY00503).
文摘With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.
文摘基于试验数据,利用扩展有限元方法(extended finite element method,XFEM)和内聚力模型(cohesive zone model,CZM),对20Cr2Ni3钢顶头表面氧化膜的断裂行为进行了数值分析,研究了氧化膜受力方向和孔洞对裂纹生长行为的影响。结果表明:氧化膜受力方向影响裂纹扩展路径,外层氧化膜裂纹尖端的J积分和应力强度因子K_I随着θ角(受力方向与氧化膜的夹角)的增大而减小,当θ角增大到90°时裂纹停止生长;外层氧化膜上孔洞使得裂纹尖端的J积分和应力强度因子K_I减小。同时,孔洞的存在使得外力传递到内层氧化膜时产生应力集中和偏移,导致内层裂纹受力不均,减小了受力方向对内层裂纹生长的影响。
文摘以硝酸镍为镍源、酸/碱性硅溶胶为硅源,采用共沉淀法制备了2种Ni/SiO_(2)催化剂。采用固定床反应器,评价Ni/SiO_(2)催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N_(2)等温吸附-脱附、H_(2)-TPR、NH3-TPD、XPS、FTIR和TEM对催化剂进行了表征。考察了硅溶胶的酸碱性对Ni/SiO_(2)催化剂结构及性能的影响。结果表明,以酸性硅溶胶为硅源制备的Ni/SiO_(2)催化剂以弱酸中心酸量为主且存在中强酸中心,比表面积、平均孔径大,因而该催化剂加氢活性和2-MTHF的选择性较高。Ni/SiO_(2)催化剂稳定性良好,在最优反应条件〔温度90℃、H_(2)压力2 MPa、质量空速4.4 g 2-MF/(g催化剂·h)、H_(2)与2-MF物质的量之比为4∶1〕下进行催化剂稳定性测试(200 h),2-MF的转化率达到99.8%,2-MTHF的选择性均保持在97.5%左右。