With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environmen...With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.展开更多
H2TiO3 was obtained from the acid-modified adsorbent precursor Li2TiO3,which was synthesized by a solid-phase reaction between TiO2 and Li2CO3.The extraction ratio of Li+ from Li2TiO3 was 98.86%,almost with no Ti4+ ...H2TiO3 was obtained from the acid-modified adsorbent precursor Li2TiO3,which was synthesized by a solid-phase reaction between TiO2 and Li2CO3.The extraction ratio of Li+ from Li2TiO3 was 98.86%,almost with no Ti4+ extracted.The effects of lithium titanium ratio,calcining temperature and time were investigated on the synthesis of Li2TiO3.Li2TiO3,H2TiO3 and the adsorbed Li+ adsorbent were characterized by XRD and SEM.The lithium adsorption properties were investigated by the adsorption kinetics and adsorption isotherm.The results indicate that H2TiO3 has an excellent adsorptive capacity for Li+.Two simplified kinetic models including the pseudo-first-order and pseudo-second-order equations were selected to follow the adsorption processes.The rate constants of adsorption for these kinetic models were calculated.The results show that the adsorption process can be described by the pseudo-second-order equation,and the process is proved to be a chemical adsorption.The adsorption process that H2TiO3 adsorbs Li+ in LiCl solution well fits the Langmuir equation with monolayer adsorption.展开更多
The increase in energy demand caused by industrialization leads to abundant CO_2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective tech...The increase in energy demand caused by industrialization leads to abundant CO_2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO_2 from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO_2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO_2 adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal–organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO_2 adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular,the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO_2 capture.展开更多
Global warming and associated global climate change have led to serious efforts towards reducing CO_(2)emissions through the CO_(2)capture from the major emission sources.CO_(2)capture using the amine functionalized a...Global warming and associated global climate change have led to serious efforts towards reducing CO_(2)emissions through the CO_(2)capture from the major emission sources.CO_(2)capture using the amine functionalized adsorbents is regard as a direct and effective way to reducing CO_(2)emissions due to their large CO_(2)adsorption amount,excellent CO_(2)adsorption selectivity and lower energy requirements for adsorbent regeneration.Moreover,large number of achievements on the amine functionalized solid adsorbent have been recorded for the enhanced CO_(2)capture in the past few years.In view of this,we review and analyze the recent advances in amine functionalized solid adsorbents prepared with different supporting materials including mesoporous silica,zeolite,porous carbon materials,metal organic frameworks(MOF)and other composite porous materials.In addition,amine functionalized solid adsorbents derived from waste resources are also reviewed because of the large number demand for cost-effective carbon dioxide adsorbents and the processing needs of waste resources.Considering the importance of the stability of the adsorbent in practical applications,advanced research in the capture cycle stability has also been summarized and analyzed.Finally,we summarize the review and offer the recommendations for the development of amine-based solid adsorbents for carbon dioxide capture.展开更多
A novel solid support adsorbent for CO2capture was developed by loading pentaethylenehexamine(PEHA)on commercially available mesoporous molecular sieve MCM-41 using wet impregnation method.MCM-41 samples before and af...A novel solid support adsorbent for CO2capture was developed by loading pentaethylenehexamine(PEHA)on commercially available mesoporous molecular sieve MCM-41 using wet impregnation method.MCM-41 samples before and after PEHA loading were characterized by X-ray powder diffraction,N2adsorption/desorption,thermal gravimetric analysis and scanning electron microscope to investigate the textural and thermo-physical properties.CO2adsorption performance was evaluated in a fixed bed adsorption system.Results indicated that the structure of MCM-41 was preserved after loading PEHA.Surface area and total pore volume of PEHA loaded MCM-41 decreased with the increase of loading.The working adsorption capacity of CO2could be significantly improved at 60%of PEHA loading and 75°C.The effect of the height of adsorbent bed was investigated and the best working adsorption capacity for MCM-41-PEHA-60 reached 165 mg·(g adsorbent)-1at 75°C.Adsorption/desorption circle showed that the CO2working adsorption capacity of MCM-41-PEHA kept stable.展开更多
A new kind of adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was synthesized by solid state reaction method. The influence of the content of doping aluminum on the adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was investigated b...A new kind of adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was synthesized by solid state reaction method. The influence of the content of doping aluminum on the adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was investigated by XRD, while the morphology of powders was observed by SEM. The investigation of the adsorption properties showed that the adsorbent can selectively adsorb sodium with the adsorption capacity of 11.76 mg/g. The optimum conditions of adsorption are at pH 10.0-11.0 in LiCl solution.展开更多
A novel carbonaceous adsorbent for heavy metal removal was prepared from raw coal by one-step simple sulfur impregnation using K2S. Raw coal was mixed with K2S powder and then heated at 800℃ for 30 min in nitrogen to...A novel carbonaceous adsorbent for heavy metal removal was prepared from raw coal by one-step simple sulfur impregnation using K2S. Raw coal was mixed with K2S powder and then heated at 800℃ for 30 min in nitrogen to produce K2S char. The sulfur content and form in K2S char were determined, and the ability of K2S char to adsorb Zn^2+, Cd^2+ and Pb^2+ was examined. The K2S impregnation was effective at impregnating sulfur into coal, especially in the form of elemental, thiophenic and sulfatic sulfur. The sulfur content of K2S char was higher than those of raw coal and pyrolysis char. The Zn^2+ removal in 2.4 mmol/L of Zn^2+ solution by K2S char was higher than raw coal with the removal rate of 100%. K2S char adsorbed Pb^2+ and Cd^2+ in 24 mmol/L of Pb^2+ and Cd^2+ solution with the removal rate of 97% and 35%, respectively. The elution extents of adsorbed Pb^2+ and Cd^2+ were zero in distilled water and 27% in 0.1 mol/L HCl solution. These results indicated that an effective adsorbent for heavy metal ions was prepared from coal using K2S sulfur impregnation, and that the adsorbed metals were strongly retained in K2S char.展开更多
2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) is commonly used as a metal extractant because it has a particular affinity for rare-earth metals like Scandium (Sc). To develop a highly-selective adsorbent of Sc(...2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) is commonly used as a metal extractant because it has a particular affinity for rare-earth metals like Scandium (Sc). To develop a highly-selective adsorbent of Sc(III), EHEP was introduced as a functional group onto a polyethylene fabric with radiation-induced graft polymerization(RIGP). The adsorption performances for Sc(III) were evaluated with aqueous solutions containing Sc(III) and Fe(III) in bath and column tests. As a result of column test, the adsorption capacities of Sc(III) and Fe(III) until the bed volume reached 5000 were 5.22 and 0.12 mg/g, respectively. It means that the amount of collected Sc(III) by the EHEP adsorbent was approximately 44 times higher than that of Fe(III). These results indicate that the grafted adsorbent containing EHEP has an extremely high selectivity for Sc(III) adsorption.展开更多
Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. Th...Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. The interlayer distance of the BMIMCl/LP layered hybrids expanded with an increasing concentration of BMIMCl, indicating that cumulative BMIMCl was intercalated into the LP layers. The efficiency of BMIMCl toward COcapture was significantly enhanced after it was immobilized within LP layers.展开更多
基金supported by the National Natural Science Foundation of China (No.52364022)the Natural Science Foundation of Guangxi Province,China (Nos.2023JJA160192 and 2021GXNSFAA220096)+1 种基金the Guangxi Science and Technology Major Project,China (No.AA23073018)the Guangxi Chongzuo Science and Technology Plan,China (No.2023ZY00503).
文摘With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.
基金Project(2008BAB35B04) supported by the National Key Technologies R&D Program of ChinaProject(2010QZZD003) supported by Central South University Advanced Research Program,China
文摘H2TiO3 was obtained from the acid-modified adsorbent precursor Li2TiO3,which was synthesized by a solid-phase reaction between TiO2 and Li2CO3.The extraction ratio of Li+ from Li2TiO3 was 98.86%,almost with no Ti4+ extracted.The effects of lithium titanium ratio,calcining temperature and time were investigated on the synthesis of Li2TiO3.Li2TiO3,H2TiO3 and the adsorbed Li+ adsorbent were characterized by XRD and SEM.The lithium adsorption properties were investigated by the adsorption kinetics and adsorption isotherm.The results indicate that H2TiO3 has an excellent adsorptive capacity for Li+.Two simplified kinetic models including the pseudo-first-order and pseudo-second-order equations were selected to follow the adsorption processes.The rate constants of adsorption for these kinetic models were calculated.The results show that the adsorption process can be described by the pseudo-second-order equation,and the process is proved to be a chemical adsorption.The adsorption process that H2TiO3 adsorbs Li+ in LiCl solution well fits the Langmuir equation with monolayer adsorption.
基金Supported by the National Key Research & Development Program of China(2017YFB0603302)
文摘The increase in energy demand caused by industrialization leads to abundant CO_2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO_2 from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO_2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO_2 adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal–organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO_2 adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular,the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO_2 capture.
基金supported by the National Natural Science Foundation of China(21878200 and 21676174)International S&T Cooperation Program of Shanxi province(201703D421038)+1 种基金Shanxi Scholarship Council of China(2017-036)Joint Fund of Shanxi Provincial Coal Seam Gas(2015012019)。
文摘Global warming and associated global climate change have led to serious efforts towards reducing CO_(2)emissions through the CO_(2)capture from the major emission sources.CO_(2)capture using the amine functionalized adsorbents is regard as a direct and effective way to reducing CO_(2)emissions due to their large CO_(2)adsorption amount,excellent CO_(2)adsorption selectivity and lower energy requirements for adsorbent regeneration.Moreover,large number of achievements on the amine functionalized solid adsorbent have been recorded for the enhanced CO_(2)capture in the past few years.In view of this,we review and analyze the recent advances in amine functionalized solid adsorbents prepared with different supporting materials including mesoporous silica,zeolite,porous carbon materials,metal organic frameworks(MOF)and other composite porous materials.In addition,amine functionalized solid adsorbents derived from waste resources are also reviewed because of the large number demand for cost-effective carbon dioxide adsorbents and the processing needs of waste resources.Considering the importance of the stability of the adsorbent in practical applications,advanced research in the capture cycle stability has also been summarized and analyzed.Finally,we summarize the review and offer the recommendations for the development of amine-based solid adsorbents for carbon dioxide capture.
基金Supported by the National Natural Science Foundation of China(20836008,21176132)the Special Research Fund for the Doctoral Program of the Ministry of Education of China(20101012174)
文摘A novel solid support adsorbent for CO2capture was developed by loading pentaethylenehexamine(PEHA)on commercially available mesoporous molecular sieve MCM-41 using wet impregnation method.MCM-41 samples before and after PEHA loading were characterized by X-ray powder diffraction,N2adsorption/desorption,thermal gravimetric analysis and scanning electron microscope to investigate the textural and thermo-physical properties.CO2adsorption performance was evaluated in a fixed bed adsorption system.Results indicated that the structure of MCM-41 was preserved after loading PEHA.Surface area and total pore volume of PEHA loaded MCM-41 decreased with the increase of loading.The working adsorption capacity of CO2could be significantly improved at 60%of PEHA loading and 75°C.The effect of the height of adsorbent bed was investigated and the best working adsorption capacity for MCM-41-PEHA-60 reached 165 mg·(g adsorbent)-1at 75°C.Adsorption/desorption circle showed that the CO2working adsorption capacity of MCM-41-PEHA kept stable.
文摘A new kind of adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was synthesized by solid state reaction method. The influence of the content of doping aluminum on the adsorbent Li(1+x)AlxTi(2-x)(PO4)3 was investigated by XRD, while the morphology of powders was observed by SEM. The investigation of the adsorption properties showed that the adsorbent can selectively adsorb sodium with the adsorption capacity of 11.76 mg/g. The optimum conditions of adsorption are at pH 10.0-11.0 in LiCl solution.
文摘A novel carbonaceous adsorbent for heavy metal removal was prepared from raw coal by one-step simple sulfur impregnation using K2S. Raw coal was mixed with K2S powder and then heated at 800℃ for 30 min in nitrogen to produce K2S char. The sulfur content and form in K2S char were determined, and the ability of K2S char to adsorb Zn^2+, Cd^2+ and Pb^2+ was examined. The K2S impregnation was effective at impregnating sulfur into coal, especially in the form of elemental, thiophenic and sulfatic sulfur. The sulfur content of K2S char was higher than those of raw coal and pyrolysis char. The Zn^2+ removal in 2.4 mmol/L of Zn^2+ solution by K2S char was higher than raw coal with the removal rate of 100%. K2S char adsorbed Pb^2+ and Cd^2+ in 24 mmol/L of Pb^2+ and Cd^2+ solution with the removal rate of 97% and 35%, respectively. The elution extents of adsorbed Pb^2+ and Cd^2+ were zero in distilled water and 27% in 0.1 mol/L HCl solution. These results indicated that an effective adsorbent for heavy metal ions was prepared from coal using K2S sulfur impregnation, and that the adsorbed metals were strongly retained in K2S char.
文摘2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) is commonly used as a metal extractant because it has a particular affinity for rare-earth metals like Scandium (Sc). To develop a highly-selective adsorbent of Sc(III), EHEP was introduced as a functional group onto a polyethylene fabric with radiation-induced graft polymerization(RIGP). The adsorption performances for Sc(III) were evaluated with aqueous solutions containing Sc(III) and Fe(III) in bath and column tests. As a result of column test, the adsorption capacities of Sc(III) and Fe(III) until the bed volume reached 5000 were 5.22 and 0.12 mg/g, respectively. It means that the amount of collected Sc(III) by the EHEP adsorbent was approximately 44 times higher than that of Fe(III). These results indicate that the grafted adsorbent containing EHEP has an extremely high selectivity for Sc(III) adsorption.
基金sponsored by the National Science Foundation(CMMI-1562907)the financial support from the National Natural Science Foundation of China(51678511 and 51308484)+4 种基金the Open Fund of Key Laboratory of Mineralogy and Metallogeny in Chinese Academy of Sciences(KLMM20150104)the Natural Science Foundation of Hunan Province(13JJ4049)the Education Department Fund of Hunan Province(14C1094)the Major Talent Training Program of Xiangtan University(16PYZ09)the Specialized Research Fund for the Doctoral Program of Xiangtan University(12QDZ18)
文摘Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. The interlayer distance of the BMIMCl/LP layered hybrids expanded with an increasing concentration of BMIMCl, indicating that cumulative BMIMCl was intercalated into the LP layers. The efficiency of BMIMCl toward COcapture was significantly enhanced after it was immobilized within LP layers.