期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Novel Cs-Mg-Al mixed oxide with improved mobility of oxygen species for passive NO_(x)adsorption 被引量:1
1
作者 Yimeng Yin Chizhong Wang +5 位作者 Lei Qiu Xing Li Feilin Zhao Jie Yu Jinchi Han Huazhen Chang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1581-1591,共11页
The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissio... The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissions.Herein,Cs_(1)Mg_(3)Al catalyst prepared by sol-gel method was cyclic tested in NO_(x)storage under 5 vol%water.At 100°C,the NO_(x)storage capacity(1219 μmol g^(-1))was much higher than that of Pt/BaO/Al_(2)O_(3)(610 μmol g^(-1)).This provided new insights for non-noble metal catalysts in low-temperature passive NO_(x)adsorption.The addition of Cs improved the mobility of oxygen species and thus improved the NO_(x)storage capacity.The XRD,XPS,IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsO_(x)and AlO_(x)sites via oxygen species formed on Cs_(1)Mg_(3)Al catalyst.The improved mobility of oxygen species inferred from O2-TPD was consistent with high NO_(x)storage capacity related to enhanced formation of nitrate and additional nitrite species by NO_(x)oxidation.Moreover,the addition of Mg might improve the stability of Cs_(1)Mg_(3)Al by stabilizing surface active oxygen species in cyclic experiments. 展开更多
关键词 Passive NO_(x)adsorber Low-temperature NO_(x)storage Cesium O_(x)ygen mobility
下载PDF
Pd-M-TiO_(2)(M=Mn,Cu,Ce and Fe)as passive NO_(x) adsorber(PNA)at low temperature
2
作者 WANG Yi-nan ZHAO Xu-teng +6 位作者 ZHENG Zu-wei JIANG Han CHEN Ting ZHANG Yi-ran CAO Hong-lin LIN He ZHAN Reggie 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2253-2265,共13页
A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) w... A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) were conducted and characterization methods such as X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM)and in situ Fourier transform infrared spectroscopy(in situ DRIFTS)were involved.The experimental results show that Mn-contained catalysts,Mn-Ti and Pd-Mn-Ti,performed excellent NO_(x) adsorbing ability and appropriate desorption temperature window.On the other hand,Ce-and Cu-contained samples were not suitable for the purpose of PNA.In addition to the low adsorption capacity,these two series of catalysts released massive amount of NO below 150℃.Characterization results indicated that Pd was highly dispersed on all catalysts.The loading of Pd lowered not only the valence states of transition metals but surface oxygen percentage as well.From in situ DRIFTS tests,the Pd had little influence on the types of adsorbed substances for Mn,Ce and Cu series.However,the storage forms of NO_(x) were obviously different on Pd-Fe-Ti and Fe-Ti. 展开更多
关键词 passive NO_(x)adsorber low temperature absorption manganese Pd-Fe interaction
下载PDF
Efficient NO_x abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange
3
作者 Linhui Liu Wuwan Xiong +4 位作者 Mingli Fu Junliang Wu Zhenguo Li Daiqi Ye Peirong Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期210-213,共4页
Palladium-exchanged chabazite(Pd-CHA) zeolites as passive NO_x adsorbers(PNAs) enable efficient purification of nitrogen oxides(NO_x) in cold-start diesel exhausts. Their commercial application, however,is limited by ... Palladium-exchanged chabazite(Pd-CHA) zeolites as passive NO_x adsorbers(PNAs) enable efficient purification of nitrogen oxides(NO_x) in cold-start diesel exhausts. Their commercial application, however,is limited by the lack of facile preparation method. Here, high-performance CHA-type Pd-SAPO-34 zeolite was synthesized by a modified solid-state ion exchange(SSIE) method using PdO as Pd precursor,and demonstrated superior PNA performance as compared to Pd-SAPO-34 prepared by conventional wetchemistry strategies. Structural characterization using Raman spectroscopy and X-ray diffraction revealed that the SSIE method avoided water-induced damage to the zeolite framework during Pd loading. Mechanistic investigations on the SSIE process by in situ infrared spectroscopy and X-ray photoelectron spectroscopy disclosed that, while PdO precursor was mainly converted to Pd^(2+) cations coordinated to the zeolite framework by consuming the-OH groups of the zeolite, a portion of PdO could also undergo thermal decomposition to form highly dispersed Pd~0 clusters in the pore channels. This simplified and scalable SSIE method paves a new way for the cost-effective synthesis of defect-free high-performance Pd-SAPO-34 zeolites as PNA catalysts. 展开更多
关键词 Pd-SAPO-34 Passive NO_x adsorber Pd loading Solid-state ion exchange Pd transformation
原文传递
Investigation of Ce/BEA as a passive NO_(x)adsorber:2.Hydrothermal aging deactivation mechanism
4
作者 Yiying Ding Minghui Yu +4 位作者 Xiaojie Yu Meiqing Shen Jianqiang Wang Jun Wang Gurong Shen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第8期1524-1530,I0004,共8页
Ce/BEA has the potential to be applied as a novel passive NO_(x)absorber(PNA)in the after-treatment of vehicles due to its considerable NO_(x)storage capacity.However,as a vehicle exhaust after-treatment material,it m... Ce/BEA has the potential to be applied as a novel passive NO_(x)absorber(PNA)in the after-treatment of vehicles due to its considerable NO_(x)storage capacity.However,as a vehicle exhaust after-treatment material,it must withstand the test of long-term hydrothermal aging.This work examined the deactivation mechanism of Ce/BEA during hydrothermal aging.3.0 wt%Ce/BEA was prepared using the ionexchange method,and then subjected to hydrothermal treatment at 650℃with 10%H_(2)O for 1-12 h to obtain samples with different aging extent.For comparison,the H-BEA support was aged under the same conditions.Brunauer-Emmett-Teller(BET)method,X-ray diffraction(XRD),NH_(3)temperature programmed reduction(NH_(3)-TPD),^(27)Al MAS nuclear magnetic resonance(^(27)Al MAS NMR),H_(2)temperature programmed reduction(H_(2)-TPR),and high resolution-transmission electron microscopy(HR-TEM)were performed to characterize the changes in PNA performance,structure,Ce species,and acidity.The HR-TEM and H_(2)-TPR results show that CeO_(x)particles appear after hydrothermal aging,which results from the detachment and aggregation of active Ce species.Based on the^(27)Al MAS NMR results,we conclude that BEA zeolite dealumination leads to the loss of acidic sites and the transformation of active Ce species on the acidic sites into the less active CeO_(x).This is the primary reason for the hydrothermal aging deactivation of Ce/BEA. 展开更多
关键词 Passive NO_(x)adsorber Ce/BEA Hydrothermal aging CeO_(x) DEALUMINATION Rare earths
原文传递
A novel material for passive NO_(x) adsorber:Ce-based BEA zeolite 被引量:3
5
作者 Yan Wu Jun Wang +7 位作者 Zexiang Chen Yi Zhu Minghui Yu Chen Wang Yanping Zhai Jianqiang Wang Gurong Shen Meiqing Shen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第8期1163-1170,I0002,共9页
Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capa... Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capacity of Ce/BEA reaches 36μmol/g in the feed gas close to realistic exhaust conditions,and the NO_(x) desorption temperature,which is around 290℃,is ideal for diesel exhaust after-treatment systems.Ce/BEA also behaves notable stability of high temperature CO exposure conditions.Multiple characterizations were performed to explore the NO_(x) adsorption chemistry of Ce/BEA.The Ce(Ⅳ)species in the BEA zeolite serves as the active center for NO_(x) adsorption.The bidentate nitrate species is responsible for the observed NO_(x) storage capacity,and the active oxygen around Ce(Ⅳ)plays a critical role in its formation.Considering the significantly better cost efficiency of Ce compared to Pd,Ce/BEA presents an enormous potential for the PNA applications and provides a novel formulation for the noblemetal choice of PNA materials. 展开更多
关键词 Passive NO_(x)adsorbers Ce/BEA Non-noble-metal Cold start Rare earths
原文传递
Recent progress of Pd/zeolite as passive NO_(x) adsorber: Adsorption chemistry, structure-performance relationships, challenges and prospects
6
作者 Ce Bian Dan Li +6 位作者 Qian Liu Shoute Zhang Lei Pang Zhu Luo Yanbing Guo Zhen Chen Tao Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1169-1179,共11页
Due to the technology limitation and inferior deNO_(x) efficiency of urea selective catalytic reduction (SCR) catalysts at low temperatures, passive NO_(x) adsorber (PNA) for decrease of NO_(x), CO and hydrocarbons (H... Due to the technology limitation and inferior deNO_(x) efficiency of urea selective catalytic reduction (SCR) catalysts at low temperatures, passive NO_(x) adsorber (PNA) for decrease of NO_(x), CO and hydrocarbons (HCs) during “cold start” of vehicles was proposed to meet the further tighten NO_(x) emission regulations in future. Among them, Pd modified zeolite PNA materials have received more attention because of their excellent NO_(x) storage capacity, anti-poisoning and hydrothermal stability and since Pd/zeolite PNA was proposed, a variety of advanced characterization methods have been applied to investigate its adsorption behavior and structure-performance relationship. The comprehension of the active sites and adsorption chemistry of Pd/zeolite PNA was also significantly improved. However, there are few reviews that systematically summarize the recent progress and application challenges in atomic-level understanding of this material. In this review, we summarized the latest research progress of Pd/zeolite PNA, including active adsorption sites, adsorption mechanism, material physicochemical properties, preparation methods, storage and release performance and structure-performance relationships. In addition, the deactivation challenges faced by Pd/zeolite PNA in practical applications, such as chemical poisoning, high temperature hydrothermal aging deactivation, etc., were also discussed at the micro-level, and some possible effective countermeasures are given. Besides, some possible improvements and research hotspots were put forward, which could be helpful for designing and constructing more efficient PNA materials for meeting the ultra-low NO_(x) emission regulation in the future. 展开更多
关键词 Emission control Pd/zeolite Passive NO_(x)adsorber NO_(x)storage Cold start
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部