The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-excha...The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-exchange adsorption properties of layered double hydroxides(LDHs).Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement(CAC)and flue gas desulfurization gypsum(FGDG)by chemical foaming technique.The mineral composition of the adsorbent material was characterized by X-ray diffraction(XRD)and Scanning electron microscopy(SEM).Through the static adsorption experiment,the adsorption effect of the mineral composition of the adsorbent on fluoride ions was deeply analyzed,and the adsorption mechanism was revealed.XRD and SEM showed that the main hydration phases of the composite cementitious system consisting of CAC and FGDG are AFm,AFt,AH_(3),and CaSO_(4)·2H_(2)O.FGDG accelerates the hydration process of CAC and inhibits the transformation of AFt to AFm.The AFt content increased,and the AFm content decreased or even disappeared as the amount of FGDG increased.Static adsorption experiment results showed that AFm and AFt in adsorbent materials could significantly enhance the adsorption of fluoride ions.The adsorption of F^(−)in aqueous solution by PAG tends more towards monolayer adsorption with a theoretical maximum capacity of 108.70 mg/g and is similar to the measured value of 112.77 mg/g.展开更多
Rare earth elements are indispensable raw materials for advanced aero-engines, special optical materials, and high-performance electronic products. With the development of the social economy, the global demand for rar...Rare earth elements are indispensable raw materials for advanced aero-engines, special optical materials, and high-performance electronic products. With the development of the social economy, the global demand for rare earth resources is increasing, and rare earths have become a key metal for the development of new industries and frontier technologies that are highly valued both at home and abroad. Ion-adsorbed rare earth ores are an important source of rare earths, so the efficient green leaching of ion-adsorbed rare earths is important. Researchers found that the selection of an efficient green leaching agent for ion-adsorbed rare earths is based on the zeta potential of tailing clay minerals in addition to leaching efficiency, and both zeta potential and leaching ion concentration are related to mineral acidity and alkalinity, and the pH of tailing water suspension is a direct indicator of environmental water quality requirements. Therefore, the efficiency of the leaching process is closely integrated with the environmental evaluation, and the characteristics and correlation of the changes in zeta potential, pH, conductivity and pollutant concentration of the pulp of clay mineral content during the leaching process of ore leaching and tailings aqueous electrolyte solution leaching are studied by evaluating the leaching system, and a set of correlation leaching efficiency and environmental impact evaluation method is established based on the results of the above analysis, which is of scientific development of ion adsorption rare earth resources. It has important theoretical significance and practical application value.展开更多
This research investigates the efficacy of activated Gmelina Wood Sawdust (GWS) as an adsorbent for the removal of methylene blue (MB) dye from aqueous solutions, in comparison with raw GWS. The study employs laborato...This research investigates the efficacy of activated Gmelina Wood Sawdust (GWS) as an adsorbent for the removal of methylene blue (MB) dye from aqueous solutions, in comparison with raw GWS. The study employs laboratory experiments to assess the percentage of dye removal across various temperature and pH conditions. The adsorption process is scrutinized under different parameters, encompassing contact time, initial dye concentration, adsorbent dosage, temperature, and pH. Results demonstrate that activated GWS surpasses its raw counterpart, showcasing superior MB dye removal percentages. Extended contact times increased initial dye concentrations, and higher adsorbent dosages contribute positively to removal efficiency, while temperature exhibits an inverse relationship with dye removal. Optimal adsorption occurs at a pH of 7.0, aligning with the adsorbent’s zero-point charge (pHzpc), underscoring the role of surface charge in the adsorption process. This study underscores the potential of activated GWS as an economical and promising adsorbent material for addressing pollutants. Furthermore, the utilization of activated carbon derived from abundant agricultural waste underscores an environmentally conscious approach to adsorption applications. The ability to tailor the size and properties of activated carbon particles opens avenues for optimizing adsorption capabilities, thereby presenting opportunities for enhanced water treatment solutions.展开更多
Novel composite magnetic microspheres containing chitosan and quaternary ammonium chitosan derivative(CHMMs) were prepared by inverse suspension method,and used for the methyl orange(MO) removal from aqueous solutions...Novel composite magnetic microspheres containing chitosan and quaternary ammonium chitosan derivative(CHMMs) were prepared by inverse suspension method,and used for the methyl orange(MO) removal from aqueous solutions.The CHMMs were characterized by a scanning electron microscope,a transmission electron microscope,and Fourier transform infrared spectroscopy,respectively.Compared with the chitosan beads,the incorporation of quaternary ammonium chitosan derivative significantly reduced the particle size.The MO adsorption by CHMMs was investigated by batch adsorption experiments.The adsorption kinetics was conformed to the pseudo second-order kinetics equation.The adsorption isotherm followed the Langmuir model better than the Freundlich model and the calculated maximum MO adsorption capacity was 266.6 mg·g^-1 at 293 K.Thermodynamic studies indicated that the MO adsorption was endothermic in nature with the enthalpy change(△H°) of 99.44 kJ·mol^-1.The CHMMs had a stable performance for MO adsorption in the pH range of 4-10,but high ionic strength deteriorated the MO removal due to the shielding of the ion exchange interaction.A 1 mol·L^-1 NaCl solution could be used to regenerate the exhausted CHMMs.The proposed CHMMs can be used as an effective adsorbent for dye removal or recovery from the dye wastewater.展开更多
Removal of Cu^2+, Cr^3+ and Cd^2+ from aqueous solutions by adsorption on montmorillonite modified by sodium dodecylsulfate (SDS) and hydroxy-alumino-silicate (HAS) was investigated. Experiments were carried ou...Removal of Cu^2+, Cr^3+ and Cd^2+ from aqueous solutions by adsorption on montmorillonite modified by sodium dodecylsulfate (SDS) and hydroxy-alumino-silicate (HAS) was investigated. Experiments were carried out as a function of solution pH, solute concentration, and time. The Langmuir model was adopted to describe the single-solute adsorption isotherm, in which the Langmuir parameters were directly taken from those obtained in single-solute systems. The kinetics of metal ions adsorption was examined and the pseudo-first-order rate constant was finally evaluated.展开更多
The study on the competitive adsorption shows that the magnitude order of metalions adsorbed onto oxide and silicate minerals in near-neutral solution with low ionic strength isin mole/nm2 as follows: CaCO3 > quart...The study on the competitive adsorption shows that the magnitude order of metalions adsorbed onto oxide and silicate minerals in near-neutral solution with low ionic strength isin mole/nm2 as follows: CaCO3 > quartz > hydrornuscovite > kaolinite > Ca-montmorillonite >goethite>gibbsite. These minerals can be divided into three groups according to their surfaceequilibrium constants KM of the adsorption reactions, which are the function of the dielectricconstants E of the absorbent minerals. The relationships between constants KM and mineral dielectric constants e are described as follows:for the adsorption reaction:The first group of minerals include quartz, goethite, 1: 1 phyllosilicates and other oxideminerals; the second: gibbsite, brucite and 2:1 phyllosilicates; the third: carbonate, sulphateand phosphorate minerals. The appearance reaction constants have a variation of magnitude± 0. 5 for different metal ions with the same mineral.展开更多
A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of poly...A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol containing sulfur. These chelating resins were found to show high adsorption capacities for Ag^+, Hg^2+, Au^3+ and Pd^2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.展开更多
A fast and selective adsorbent for Hg(ll) from aqueous solutions using thiourea (TU) functionalized polypropylene fiber grafted acrylic acid (PP-g-AA), PP-g-AA-TU fibers, was characterized by Fourier transform i...A fast and selective adsorbent for Hg(ll) from aqueous solutions using thiourea (TU) functionalized polypropylene fiber grafted acrylic acid (PP-g-AA), PP-g-AA-TU fibers, was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption behavior of the functionalized chelating fibers for Hg(Ⅱ) was investigated by static adsorption experiments, and the effects of some essential factors on adsorption of Hg(Ⅱ) were examined, such as pH, initial concentration, adsorption time, coexisting cations, and temperature, The results showed that the adsorptive equilibrium could be achieved in 10 min, and the equilibrium adsorption quantity of PP-g-AA-TU fibers was 20 times that of PP-g-AA fibers. The PP-g-AA-TU fibers showed a very high adsorption rate and a good selectivity for Hg(Ⅱ) over a wide range of pH. The adsorption isotherm can be well described with Langmuir model, with the maximum adsorption capacity for Hg(Ⅱ) up to 52.04 mg.g-1 and the removal of Hg(Ⅱ) more than 97%. The kinetic data indicate that the adsorption process is best-fitted into the pseudo-second-order model.展开更多
C3S pastes containing 0%,5%,10%,and 15%nano-SiO2 mixed with de-ionized water and alkali solutions were prepared.When C3S was completely hydrated,the pastes were ground into powders with a particle size less than 80μm...C3S pastes containing 0%,5%,10%,and 15%nano-SiO2 mixed with de-ionized water and alkali solutions were prepared.When C3S was completely hydrated,the pastes were ground into powders with a particle size less than 80μm.Adsorption and desorption characteristics of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water immersed in alkali solutions and those in C3S-nano SiO2 pastes mixed with alkali solutions,were investigated.Meawhile,the adsorption mechanisms of alkali ions were discussed.Results showed that the contents of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water increased with increasing substitution levels of nano-SiO2 and/or the initial alkali concentrations.In C3S-nano SiO2 pastes mixed with de-ionized water,each paste was characterized by having a fixed alkali-adsorption capacity that was essentially independent of alkali concentration.No obvious difference between the adsorption capacity of a given paste for K~+and Na~+was observed.Adsorption of alkali ions in the pastes is considered to be caused by surface force which is related to the BET specific surface area of the paste,and charge compensation of C-S-H gel,mainly by electrostatic interactions.In C3S-nano SiO2 pastes mixed with alkali solutions,alkali ions may enter the structure of C-S-H gel to replace a part of Ca^2+in the interlayer.This assumption is supported by the structural characterization of C-S-H gel using ^(29)Si MAS NMR.展开更多
Three different kinds of sepiolite(Type A, Type B and Sepiolite fiber) were processed by calcination and analyzed by thermogravimetric analysis(TG), X-ray diffraction diffractometer(XRD), scanning electron microscopy(...Three different kinds of sepiolite(Type A, Type B and Sepiolite fiber) were processed by calcination and analyzed by thermogravimetric analysis(TG), X-ray diffraction diffractometer(XRD), scanning electron microscopy(SEM), BET(specific surface area from N2 adsorption isotherms), mercury intrusion porosimetry(MIP), and infrared spectroscopic analysis(IR), respectively. The results show that the adsorption performance of sepiolite can be changed by calcination and environment temperatures, especially for calcination. The adsorption capacity of sepiolite fiber is bigger than that of Type A and B, and adsorption capacity of each sepiolite to sulfate is smaller than that of the chloride ions. Especially, the maximum value for adsorption of the sepiolite fibers, calcined at 600 ℃ and water bath at 60 ℃, to chlorine ion and sulfate are 5.95 and 5.71 mg/g, respectively(mg/g : the ions quantity adsorbed by a unit of sepiolite weight). The minimum adsorption of calcined sepiolite fiber to sulfate ions increased from 5.02 to 5.55 mg/g. While microstructure analysis of sepiolite by TG indicated that its structure was, for temperature not exceeding 700 ℃, was not changed significantly. Sepiolite has a porous structure, especially for sepiolite fiber, which can be observed by SEM. BET indicates that sepiolite fiber has a larger pore volume than others and this can be increased by calcination. IR shows that the adsorption of sepiolite to Cl-and SO42- belongs to physical absorption, instead of chemisorption.展开更多
Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase ...Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase CO_2 mole fracion of 0.766 at 308K and 101. 3kPa. The experimental adsorption phase diagrams were obtained for CO_2-C_2H_4 on NaZSM5 and MgZSM5. Single component adsorption isotherms for CO_2 and C_2H_4 were also obtained for these two zeolites. The single component data were used to obtain parameters derived in the vacancy solution model (VSM) and the statistical thermodynamic model(STM). These parameters were, in turn, used to predict binary mixture isotherms for these two zeolites. The agreement between experimental data and predicted value is generally good.展开更多
Amino-type adsorbents(ATAs) were prepared by radiation-induced graft copolymerization of 4-hydroxybutyl acry late glycidyl ether(HB) onto a polyethylene-coated polypropylene(PE/PP) duplex fiber of a non-woven fabric,a...Amino-type adsorbents(ATAs) were prepared by radiation-induced graft copolymerization of 4-hydroxybutyl acry late glycidyl ether(HB) onto a polyethylene-coated polypropylene(PE/PP) duplex fiber of a non-woven fabric,and modified with different amines of ethylenediamine(EDA),diethylenetriamine(DETA),triethylenetetramine(TETA) and diethylamine(DEA).The adsorption behavior of uranyl ions onto the ATAs was studied in batch experiments.The effects of the contact time,initial concentration of the ions,temperature,and pH value.The salinity were investigated along with the adsorption kinetics and the adsorption isotherms.The kinetic experimental data followed the pseudo second-order kinetic model,and the adsorption isotherms correlated well with the Langmuir model.The ATAs showed good efficiency in adsorbing uranyl ions,with the best saturation adsorption capacity being 64.26 mg g^(-1) for ATA-DETA within 120 min.The temperature dependence of ATADETA was quite abnormal and the quickest behavior was obtained at 25 ℃.ATAs showed good adsorption capacity over a wide pH range of 4.0-8.5,and HCl could be used in the elution process.Salinity of the solution had great effect on the adsorption capacity,3.5%salinity resulted in a 55%loss of capacity from ATA-DETA.The selectivity of ATA-DETA showed an order of:UO_2^(2+)≈Fe^(3+)> Zn^(2+) > VO_3^- > Co^(2+) > Ni^(2+).展开更多
Adsorption by nanoporous media is critically involved in many fundamental geological and geochemical processes including chemical weathering,element migration and enrichment,environmental pollution,etc.Yet,the adsorpt...Adsorption by nanoporous media is critically involved in many fundamental geological and geochemical processes including chemical weathering,element migration and enrichment,environmental pollution,etc.Yet,the adsorption behavior of metal ions on nanoporous materials has not been systematically investigated.In this study,MCM-41 material with a monodisperse pore size(4.4 nm)and a large BET specific surface area(839 m^2/g)was hydrothermally prepared and used as a model silica adsorbent to study the adsorption characteristics of Cu^2+as a representative metal ion.The Cu^2+adsorption capacity was found to increase with increasing suspension pH in the range from 3 to 5 and to decrease in the presence of NaNO3.At 25℃,pH=5,and a solid-to-liquid ratio of 5 g/L,the adsorption capacity was determined to be 0.29 mg/g,which can be converted to a dimensionless partition coefficient of 45,indicating a strong enriching effect of nanoporous silica.The adsorption isotherm and kinetic data were fitted to several commonly used thermodynamic,kinetic,and diffusion models.The adsorption mechanism was also studied by Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption spectroscopy.The results suggest that Cu2+ion adsorption is an entropy-driven endothermal process,possibly involving both outer-sphere and inner-sphere complexes.展开更多
An alkaline precipitation method was introduced to produce hydrous cerium oxides.The prepared powder was characterized by Brunauer-Emmett-Teller(BET) nitrogen adsorption-desorption,X-ray diffraction(XRD),Fourier t...An alkaline precipitation method was introduced to produce hydrous cerium oxides.The prepared powder was characterized by Brunauer-Emmett-Teller(BET) nitrogen adsorption-desorption,X-ray diffraction(XRD),Fourier transform infrared(FTIR) spectrometry,and thermal gravimetry(TG) approaches.The adsorbent has a chemical formula of CeO2·nH2O(n 2) and a cubic fluorite-type structure after high temperature treatment.Adsorption capacity of different temperature treated hydrous cerium oxides does not directly correlate with BET specific surface area.Phosphate adsorption isotherms follow the Langmuir equation below the treatment temperature of 800°C.Phosphate adsorption causes no change on the structure of a hydrous cerium oxides,and no signs of CePO4 precipitates are found.The ion-exchanging structure of hydrous cerium oxide plays a fundamental role in phosphate adsorption.The structure is highly temperature resistant and forms adsorption sites which adsorb both water and some anions.Complete loss of adsorption ability cannot be achieved unless the treatment temperature is higher than 1200°C.Mechanism study shows that the adsorption of phosphates is mainly an anion-exchange process.展开更多
Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidizati...Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105'C; pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was - OCH2CH2NHC2H4NH2, - O(CH2CH2NH)2C2H4NH2 and - O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process. TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.展开更多
Desulphurization slag modified nickel slag adsorbent was prepared by unburned forming technology. The structure of the sample was characterized by BET,XRD,IR,SEM and EDAX. The adsorption performance of Pb^2+ and Cu^2...Desulphurization slag modified nickel slag adsorbent was prepared by unburned forming technology. The structure of the sample was characterized by BET,XRD,IR,SEM and EDAX. The adsorption performance of Pb^2+ and Cu^2+ onto the resultant adsorbent from aqueous solution was studied. Results indicated that the adsorbent possesses a network pore structure formed by the AFt and C–S–H through cross lapping; the adsorbent contains a large number of Si–OH and Al–OH functional groups. The presence of functional groups not only provides abundant adsorption sites for Pb^2+ and Cu^2+,but also improves the adsorption performance of Pb^2+ and Cu^2+ from waste water through the complexation of heavy metal ions. The result of specific surface area analysis showed that the adsorbent sample possesses mesoporous structure and the BET specific surface area is 27.15 m^2/g. The solution p H values for the adsorption of Pb^2+ and Cu^2+ were optimized to be 6 and 5.5,respectively. The adsorption capacities of Pb^2+ and Cu^2+ gradually increase,whereas the removal rates of the two metal ions decrease with increasing the initial concentration of simulated solution. The resultant adsorbent gives a higher adsorption capacity for Cu^2+ than for Pb^2+ in the single ion solution. However,it shows preferential adsorption of Pb^2+ rather than that of Cu^2+. Meanwhile,results of recyclability indicate the remarkable regeneration capacity,re-adsorption ability and reusability performance of the adsorbent sample.展开更多
A novel chemically modified cellulose (DTD) adsorbent bearing pendent methyl benzalaniline chelating group was synthesized. This new adsorbent was used for the removal of Cu2+ and Pb2+ heavy metal ions from aqueous so...A novel chemically modified cellulose (DTD) adsorbent bearing pendent methyl benzalaniline chelating group was synthesized. This new adsorbent was used for the removal of Cu2+ and Pb2+ heavy metal ions from aqueous solution. The chemical and structural characteristics of the adsorbent were determined using FT-IR, 13C CP-MAS NMR, SEM, EDX and TGA analysis. The adsorption parameters, such as pH, adsorbent dose, contact time, initial metal ion concentration and temperature were optimized. Adsorption kinetic parameters were fitted into pseudo-first-order and pseudo-second-order models. The kinetic data fitted well to the pseudo-second-order kinetic model. The adsorption isotherms such as Freundlich and Langmuir isotherms have been investigated. Thermodynamic parameters have also been evaluated. The negative values of △G0 and △H0 reveal that the adsorption system is spontaneous and exothermic in nature. The modified cellulose was challenged with microorganisms as a function of contact time. The biocidal results showed that the chemically modified cellulose has bactericidal effect against the bacterial species.展开更多
Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared materia...Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared material was characterized by using the infrared spectra, X-ray diffractometer, and scanning electron microscopy. The batch experiments were conducted to study the optimal adsorption condition of adsorption trace Pb(Ⅱ) from aqueous solutions on Pb(Ⅱ)-imprinted polymer. The equilibrium was achieved in approximately 4,0 h, and the experimental kinetic data were fitted the pseudo second-order model better. The maximum adsorption capacity was 22.7 mg/g, and the Langmuir equation fitted the adsorption isotherm data. The results of selectivity experiment showed that selectively adsorbed rate of Pb(Ⅱ) on Pb(Ⅱ)-imprinted polymer was higher than all other studied ions. Desorption conditions of the adsorbed Pb(Ⅱ) from the Pb(Ⅱ)-imprinted polymer were also studied in batch experiments. The prepared Pb(Ⅱ)-imprinted polymer was shown to be promising for the separation and enrichment of trace Pb(Ⅱ) from water samples. The adsorption and desorption mechanisms were proposed.展开更多
In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since hum...In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.展开更多
The efficacy of coconut tree sawdust (CTS), eggshell (ES) and sugarcane bagasse (SB) as alternative low-cost biosorbents for the removal of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions was investigated. Batch...The efficacy of coconut tree sawdust (CTS), eggshell (ES) and sugarcane bagasse (SB) as alternative low-cost biosorbents for the removal of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions was investigated. Batch adsorption studies were carried out to evaluate the effects of solution pH and initial metal concentration on adsorption capacity. The optimum biosorption condition was found at pH 6.0, 0.1 g biomass dosage and at 90 min equilibrium time. The adsorption data were fitted to the Freundlich and Langmuir isotherm models. The adsorption capacity and affinity of CTS, ES and SB were evaluated. The Freundlich constant (n) and separation factor (RL) values suggest that the metal ions were favourably adsorbed onto biosorbents. The maximum adsorption capacities (Q) estimated from the Langmuir isotherm model for Cu(II), Pb(II) and Zn(II) were 3.89, 25.00 and 23.81 mg/g for CTS, 34.48, 90.90 and 35.71 mg/g for ES, and 3.65, 21.28 and 40.00 mg/g for SB, respectively. The characterisation studies were performed using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectrometer (EDX) and Fourier Transform Infrared Spectrometer (FTIR). Interaction with metal ions led to the formation of discrete aggregates on the biosorbents surface. The metal ions bound to the active sites of the biosorbents through either electrostatic attraction or complexation mechanism.展开更多
基金supported by the National Natural Science Foundation of China(No.52279138)supported by Scientific Research Project of Shanxi Province(2018SF-367).
文摘The adsorption method has the advantages of low cost,high efficiency,and environmental friendliness in treating fluorinated wastewater,and the adsorbent material is the key.This study combines the inherent anion-exchange adsorption properties of layered double hydroxides(LDHs).Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement(CAC)and flue gas desulfurization gypsum(FGDG)by chemical foaming technique.The mineral composition of the adsorbent material was characterized by X-ray diffraction(XRD)and Scanning electron microscopy(SEM).Through the static adsorption experiment,the adsorption effect of the mineral composition of the adsorbent on fluoride ions was deeply analyzed,and the adsorption mechanism was revealed.XRD and SEM showed that the main hydration phases of the composite cementitious system consisting of CAC and FGDG are AFm,AFt,AH_(3),and CaSO_(4)·2H_(2)O.FGDG accelerates the hydration process of CAC and inhibits the transformation of AFt to AFm.The AFt content increased,and the AFm content decreased or even disappeared as the amount of FGDG increased.Static adsorption experiment results showed that AFm and AFt in adsorbent materials could significantly enhance the adsorption of fluoride ions.The adsorption of F^(−)in aqueous solution by PAG tends more towards monolayer adsorption with a theoretical maximum capacity of 108.70 mg/g and is similar to the measured value of 112.77 mg/g.
文摘Rare earth elements are indispensable raw materials for advanced aero-engines, special optical materials, and high-performance electronic products. With the development of the social economy, the global demand for rare earth resources is increasing, and rare earths have become a key metal for the development of new industries and frontier technologies that are highly valued both at home and abroad. Ion-adsorbed rare earth ores are an important source of rare earths, so the efficient green leaching of ion-adsorbed rare earths is important. Researchers found that the selection of an efficient green leaching agent for ion-adsorbed rare earths is based on the zeta potential of tailing clay minerals in addition to leaching efficiency, and both zeta potential and leaching ion concentration are related to mineral acidity and alkalinity, and the pH of tailing water suspension is a direct indicator of environmental water quality requirements. Therefore, the efficiency of the leaching process is closely integrated with the environmental evaluation, and the characteristics and correlation of the changes in zeta potential, pH, conductivity and pollutant concentration of the pulp of clay mineral content during the leaching process of ore leaching and tailings aqueous electrolyte solution leaching are studied by evaluating the leaching system, and a set of correlation leaching efficiency and environmental impact evaluation method is established based on the results of the above analysis, which is of scientific development of ion adsorption rare earth resources. It has important theoretical significance and practical application value.
文摘This research investigates the efficacy of activated Gmelina Wood Sawdust (GWS) as an adsorbent for the removal of methylene blue (MB) dye from aqueous solutions, in comparison with raw GWS. The study employs laboratory experiments to assess the percentage of dye removal across various temperature and pH conditions. The adsorption process is scrutinized under different parameters, encompassing contact time, initial dye concentration, adsorbent dosage, temperature, and pH. Results demonstrate that activated GWS surpasses its raw counterpart, showcasing superior MB dye removal percentages. Extended contact times increased initial dye concentrations, and higher adsorbent dosages contribute positively to removal efficiency, while temperature exhibits an inverse relationship with dye removal. Optimal adsorption occurs at a pH of 7.0, aligning with the adsorbent’s zero-point charge (pHzpc), underscoring the role of surface charge in the adsorption process. This study underscores the potential of activated GWS as an economical and promising adsorbent material for addressing pollutants. Furthermore, the utilization of activated carbon derived from abundant agricultural waste underscores an environmentally conscious approach to adsorption applications. The ability to tailor the size and properties of activated carbon particles opens avenues for optimizing adsorption capabilities, thereby presenting opportunities for enhanced water treatment solutions.
基金Supported by the National Key Project for Research and Development(2016YFC0400503)the National Natural Science Foundation of China(51478314,51678408,51508385)the Science and Technology Plans of Tianjin(17PTSYJC00050,17ZYPTJC00060)
文摘Novel composite magnetic microspheres containing chitosan and quaternary ammonium chitosan derivative(CHMMs) were prepared by inverse suspension method,and used for the methyl orange(MO) removal from aqueous solutions.The CHMMs were characterized by a scanning electron microscope,a transmission electron microscope,and Fourier transform infrared spectroscopy,respectively.Compared with the chitosan beads,the incorporation of quaternary ammonium chitosan derivative significantly reduced the particle size.The MO adsorption by CHMMs was investigated by batch adsorption experiments.The adsorption kinetics was conformed to the pseudo second-order kinetics equation.The adsorption isotherm followed the Langmuir model better than the Freundlich model and the calculated maximum MO adsorption capacity was 266.6 mg·g^-1 at 293 K.Thermodynamic studies indicated that the MO adsorption was endothermic in nature with the enthalpy change(△H°) of 99.44 kJ·mol^-1.The CHMMs had a stable performance for MO adsorption in the pH range of 4-10,but high ionic strength deteriorated the MO removal due to the shielding of the ion exchange interaction.A 1 mol·L^-1 NaCl solution could be used to regenerate the exhausted CHMMs.The proposed CHMMs can be used as an effective adsorbent for dye removal or recovery from the dye wastewater.
基金the National Natural Science Foundation of China (Grant Nos. 40202007, 40573064)the Natural Science Foundation of Guangdong Province (Grant No. 04020017) the Student Research Program (SRP) of South China University of Technology for financial support.
文摘Removal of Cu^2+, Cr^3+ and Cd^2+ from aqueous solutions by adsorption on montmorillonite modified by sodium dodecylsulfate (SDS) and hydroxy-alumino-silicate (HAS) was investigated. Experiments were carried out as a function of solution pH, solute concentration, and time. The Langmuir model was adopted to describe the single-solute adsorption isotherm, in which the Langmuir parameters were directly taken from those obtained in single-solute systems. The kinetics of metal ions adsorption was examined and the pseudo-first-order rate constant was finally evaluated.
文摘The study on the competitive adsorption shows that the magnitude order of metalions adsorbed onto oxide and silicate minerals in near-neutral solution with low ionic strength isin mole/nm2 as follows: CaCO3 > quartz > hydrornuscovite > kaolinite > Ca-montmorillonite >goethite>gibbsite. These minerals can be divided into three groups according to their surfaceequilibrium constants KM of the adsorption reactions, which are the function of the dielectricconstants E of the absorbent minerals. The relationships between constants KM and mineral dielectric constants e are described as follows:for the adsorption reaction:The first group of minerals include quartz, goethite, 1: 1 phyllosilicates and other oxideminerals; the second: gibbsite, brucite and 2:1 phyllosilicates; the third: carbonate, sulphateand phosphorate minerals. The appearance reaction constants have a variation of magnitude± 0. 5 for different metal ions with the same mineral.
基金The authors are grateful to the financial support by the Postdoctoral Science Foundation of China(No.2003034330)the Science Foundation for mid-youth elite of Shangdong Province+1 种基金the Natural Science Foundation of Shangdong Province(No.Q99B15)the National Natural Science Foundation of China(No.2906008)
文摘A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol containing sulfur. These chelating resins were found to show high adsorption capacities for Ag^+, Hg^2+, Au^3+ and Pd^2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.
基金Supported by the Tianjin and MOST Innovation Fund for Small Technology-based Firms(14ZXCXGX00724,13C26211200305)Science and Technology Support Program(13ZCZDSF00100)
文摘A fast and selective adsorbent for Hg(ll) from aqueous solutions using thiourea (TU) functionalized polypropylene fiber grafted acrylic acid (PP-g-AA), PP-g-AA-TU fibers, was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption behavior of the functionalized chelating fibers for Hg(Ⅱ) was investigated by static adsorption experiments, and the effects of some essential factors on adsorption of Hg(Ⅱ) were examined, such as pH, initial concentration, adsorption time, coexisting cations, and temperature, The results showed that the adsorptive equilibrium could be achieved in 10 min, and the equilibrium adsorption quantity of PP-g-AA-TU fibers was 20 times that of PP-g-AA fibers. The PP-g-AA-TU fibers showed a very high adsorption rate and a good selectivity for Hg(Ⅱ) over a wide range of pH. The adsorption isotherm can be well described with Langmuir model, with the maximum adsorption capacity for Hg(Ⅱ) up to 52.04 mg.g-1 and the removal of Hg(Ⅱ) more than 97%. The kinetic data indicate that the adsorption process is best-fitted into the pseudo-second-order model.
基金Funded by the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT1146)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘C3S pastes containing 0%,5%,10%,and 15%nano-SiO2 mixed with de-ionized water and alkali solutions were prepared.When C3S was completely hydrated,the pastes were ground into powders with a particle size less than 80μm.Adsorption and desorption characteristics of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water immersed in alkali solutions and those in C3S-nano SiO2 pastes mixed with alkali solutions,were investigated.Meawhile,the adsorption mechanisms of alkali ions were discussed.Results showed that the contents of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water increased with increasing substitution levels of nano-SiO2 and/or the initial alkali concentrations.In C3S-nano SiO2 pastes mixed with de-ionized water,each paste was characterized by having a fixed alkali-adsorption capacity that was essentially independent of alkali concentration.No obvious difference between the adsorption capacity of a given paste for K~+and Na~+was observed.Adsorption of alkali ions in the pastes is considered to be caused by surface force which is related to the BET specific surface area of the paste,and charge compensation of C-S-H gel,mainly by electrostatic interactions.In C3S-nano SiO2 pastes mixed with alkali solutions,alkali ions may enter the structure of C-S-H gel to replace a part of Ca^2+in the interlayer.This assumption is supported by the structural characterization of C-S-H gel using ^(29)Si MAS NMR.
基金Funded by National Natural Science Foundation of China(No.51408380)the National Key Research and Development Program of China(No.2018 YFD0200200)Shijiazhuang Tiedao University Postgraduate Innovation Funding Project(No.YC2019054).
文摘Three different kinds of sepiolite(Type A, Type B and Sepiolite fiber) were processed by calcination and analyzed by thermogravimetric analysis(TG), X-ray diffraction diffractometer(XRD), scanning electron microscopy(SEM), BET(specific surface area from N2 adsorption isotherms), mercury intrusion porosimetry(MIP), and infrared spectroscopic analysis(IR), respectively. The results show that the adsorption performance of sepiolite can be changed by calcination and environment temperatures, especially for calcination. The adsorption capacity of sepiolite fiber is bigger than that of Type A and B, and adsorption capacity of each sepiolite to sulfate is smaller than that of the chloride ions. Especially, the maximum value for adsorption of the sepiolite fibers, calcined at 600 ℃ and water bath at 60 ℃, to chlorine ion and sulfate are 5.95 and 5.71 mg/g, respectively(mg/g : the ions quantity adsorbed by a unit of sepiolite weight). The minimum adsorption of calcined sepiolite fiber to sulfate ions increased from 5.02 to 5.55 mg/g. While microstructure analysis of sepiolite by TG indicated that its structure was, for temperature not exceeding 700 ℃, was not changed significantly. Sepiolite has a porous structure, especially for sepiolite fiber, which can be observed by SEM. BET indicates that sepiolite fiber has a larger pore volume than others and this can be increased by calcination. IR shows that the adsorption of sepiolite to Cl-and SO42- belongs to physical absorption, instead of chemisorption.
文摘Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase CO_2 mole fracion of 0.766 at 308K and 101. 3kPa. The experimental adsorption phase diagrams were obtained for CO_2-C_2H_4 on NaZSM5 and MgZSM5. Single component adsorption isotherms for CO_2 and C_2H_4 were also obtained for these two zeolites. The single component data were used to obtain parameters derived in the vacancy solution model (VSM) and the statistical thermodynamic model(STM). These parameters were, in turn, used to predict binary mixture isotherms for these two zeolites. The agreement between experimental data and predicted value is generally good.
基金Supported by National Natural Science Foundation of China(Nos.11175234 and 11105210)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(No.XDA02030200)+1 种基金the"Knowledge Innovation Program"of the Chinese Academy of Sciences(No.KJCX2YW-N49)Shanghai Municipal Commission for Science and Technology(Nos.11ZR1445400 and 12ZR1453300)
文摘Amino-type adsorbents(ATAs) were prepared by radiation-induced graft copolymerization of 4-hydroxybutyl acry late glycidyl ether(HB) onto a polyethylene-coated polypropylene(PE/PP) duplex fiber of a non-woven fabric,and modified with different amines of ethylenediamine(EDA),diethylenetriamine(DETA),triethylenetetramine(TETA) and diethylamine(DEA).The adsorption behavior of uranyl ions onto the ATAs was studied in batch experiments.The effects of the contact time,initial concentration of the ions,temperature,and pH value.The salinity were investigated along with the adsorption kinetics and the adsorption isotherms.The kinetic experimental data followed the pseudo second-order kinetic model,and the adsorption isotherms correlated well with the Langmuir model.The ATAs showed good efficiency in adsorbing uranyl ions,with the best saturation adsorption capacity being 64.26 mg g^(-1) for ATA-DETA within 120 min.The temperature dependence of ATADETA was quite abnormal and the quickest behavior was obtained at 25 ℃.ATAs showed good adsorption capacity over a wide pH range of 4.0-8.5,and HCl could be used in the elution process.Salinity of the solution had great effect on the adsorption capacity,3.5%salinity resulted in a 55%loss of capacity from ATA-DETA.The selectivity of ATA-DETA showed an order of:UO_2^(2+)≈Fe^(3+)> Zn^(2+) > VO_3^- > Co^(2+) > Ni^(2+).
基金Financial supports from Natural Science Foundation of China (Grant No. 41473064/41603065)Science Technology Department Foundation of Guizhou Province (Grant No. QianKeHe J [2015]2125)
文摘Adsorption by nanoporous media is critically involved in many fundamental geological and geochemical processes including chemical weathering,element migration and enrichment,environmental pollution,etc.Yet,the adsorption behavior of metal ions on nanoporous materials has not been systematically investigated.In this study,MCM-41 material with a monodisperse pore size(4.4 nm)and a large BET specific surface area(839 m^2/g)was hydrothermally prepared and used as a model silica adsorbent to study the adsorption characteristics of Cu^2+as a representative metal ion.The Cu^2+adsorption capacity was found to increase with increasing suspension pH in the range from 3 to 5 and to decrease in the presence of NaNO3.At 25℃,pH=5,and a solid-to-liquid ratio of 5 g/L,the adsorption capacity was determined to be 0.29 mg/g,which can be converted to a dimensionless partition coefficient of 45,indicating a strong enriching effect of nanoporous silica.The adsorption isotherm and kinetic data were fitted to several commonly used thermodynamic,kinetic,and diffusion models.The adsorption mechanism was also studied by Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption spectroscopy.The results suggest that Cu2+ion adsorption is an entropy-driven endothermal process,possibly involving both outer-sphere and inner-sphere complexes.
基金support from the National Natural Science Foundation of China (No.20876157)
文摘An alkaline precipitation method was introduced to produce hydrous cerium oxides.The prepared powder was characterized by Brunauer-Emmett-Teller(BET) nitrogen adsorption-desorption,X-ray diffraction(XRD),Fourier transform infrared(FTIR) spectrometry,and thermal gravimetry(TG) approaches.The adsorbent has a chemical formula of CeO2·nH2O(n 2) and a cubic fluorite-type structure after high temperature treatment.Adsorption capacity of different temperature treated hydrous cerium oxides does not directly correlate with BET specific surface area.Phosphate adsorption isotherms follow the Langmuir equation below the treatment temperature of 800°C.Phosphate adsorption causes no change on the structure of a hydrous cerium oxides,and no signs of CePO4 precipitates are found.The ion-exchanging structure of hydrous cerium oxide plays a fundamental role in phosphate adsorption.The structure is highly temperature resistant and forms adsorption sites which adsorb both water and some anions.Complete loss of adsorption ability cannot be achieved unless the treatment temperature is higher than 1200°C.Mechanism study shows that the adsorption of phosphates is mainly an anion-exchange process.
基金This work was supported by the Postdoctoral Science Foundation of China (No. 2003034330), the Science Foundation forElite of Middle Age and Youth of Shandong Province, the Natural Science Foundation of Shandong Province (No. Q99B15)and the National Natural Science Foundation of China (No. 29906008).
文摘Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105'C; pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was - OCH2CH2NHC2H4NH2, - O(CH2CH2NH)2C2H4NH2 and - O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process. TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.
基金Supported by the National Natural Science Foundation of China(Nos.51472050,51402295 and 51672046)
文摘Desulphurization slag modified nickel slag adsorbent was prepared by unburned forming technology. The structure of the sample was characterized by BET,XRD,IR,SEM and EDAX. The adsorption performance of Pb^2+ and Cu^2+ onto the resultant adsorbent from aqueous solution was studied. Results indicated that the adsorbent possesses a network pore structure formed by the AFt and C–S–H through cross lapping; the adsorbent contains a large number of Si–OH and Al–OH functional groups. The presence of functional groups not only provides abundant adsorption sites for Pb^2+ and Cu^2+,but also improves the adsorption performance of Pb^2+ and Cu^2+ from waste water through the complexation of heavy metal ions. The result of specific surface area analysis showed that the adsorbent sample possesses mesoporous structure and the BET specific surface area is 27.15 m^2/g. The solution p H values for the adsorption of Pb^2+ and Cu^2+ were optimized to be 6 and 5.5,respectively. The adsorption capacities of Pb^2+ and Cu^2+ gradually increase,whereas the removal rates of the two metal ions decrease with increasing the initial concentration of simulated solution. The resultant adsorbent gives a higher adsorption capacity for Cu^2+ than for Pb^2+ in the single ion solution. However,it shows preferential adsorption of Pb^2+ rather than that of Cu^2+. Meanwhile,results of recyclability indicate the remarkable regeneration capacity,re-adsorption ability and reusability performance of the adsorbent sample.
文摘A novel chemically modified cellulose (DTD) adsorbent bearing pendent methyl benzalaniline chelating group was synthesized. This new adsorbent was used for the removal of Cu2+ and Pb2+ heavy metal ions from aqueous solution. The chemical and structural characteristics of the adsorbent were determined using FT-IR, 13C CP-MAS NMR, SEM, EDX and TGA analysis. The adsorption parameters, such as pH, adsorbent dose, contact time, initial metal ion concentration and temperature were optimized. Adsorption kinetic parameters were fitted into pseudo-first-order and pseudo-second-order models. The kinetic data fitted well to the pseudo-second-order kinetic model. The adsorption isotherms such as Freundlich and Langmuir isotherms have been investigated. Thermodynamic parameters have also been evaluated. The negative values of △G0 and △H0 reveal that the adsorption system is spontaneous and exothermic in nature. The modified cellulose was challenged with microorganisms as a function of contact time. The biocidal results showed that the chemically modified cellulose has bactericidal effect against the bacterial species.
基金supported by the National Natural Science Foundation of China (No. 20877036)
文摘Surface ion-imprinted in combination with sol-gel process was applied to synthesis a new Pb(Ⅱ)-imprinted polymer for selective separation and enrichment of trace Pb(Ⅱ) from aqueous solution. The prepared material was characterized by using the infrared spectra, X-ray diffractometer, and scanning electron microscopy. The batch experiments were conducted to study the optimal adsorption condition of adsorption trace Pb(Ⅱ) from aqueous solutions on Pb(Ⅱ)-imprinted polymer. The equilibrium was achieved in approximately 4,0 h, and the experimental kinetic data were fitted the pseudo second-order model better. The maximum adsorption capacity was 22.7 mg/g, and the Langmuir equation fitted the adsorption isotherm data. The results of selectivity experiment showed that selectively adsorbed rate of Pb(Ⅱ) on Pb(Ⅱ)-imprinted polymer was higher than all other studied ions. Desorption conditions of the adsorbed Pb(Ⅱ) from the Pb(Ⅱ)-imprinted polymer were also studied in batch experiments. The prepared Pb(Ⅱ)-imprinted polymer was shown to be promising for the separation and enrichment of trace Pb(Ⅱ) from water samples. The adsorption and desorption mechanisms were proposed.
基金support provided by the National Nature Science Fund(No.50778088)China National Funds for Distinguished Young Scientists(No.50825802)Resources Special Subject of National High Technology Research & Development Project(863 project,No.2006AA06Z383),China.
文摘In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.
文摘The efficacy of coconut tree sawdust (CTS), eggshell (ES) and sugarcane bagasse (SB) as alternative low-cost biosorbents for the removal of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions was investigated. Batch adsorption studies were carried out to evaluate the effects of solution pH and initial metal concentration on adsorption capacity. The optimum biosorption condition was found at pH 6.0, 0.1 g biomass dosage and at 90 min equilibrium time. The adsorption data were fitted to the Freundlich and Langmuir isotherm models. The adsorption capacity and affinity of CTS, ES and SB were evaluated. The Freundlich constant (n) and separation factor (RL) values suggest that the metal ions were favourably adsorbed onto biosorbents. The maximum adsorption capacities (Q) estimated from the Langmuir isotherm model for Cu(II), Pb(II) and Zn(II) were 3.89, 25.00 and 23.81 mg/g for CTS, 34.48, 90.90 and 35.71 mg/g for ES, and 3.65, 21.28 and 40.00 mg/g for SB, respectively. The characterisation studies were performed using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectrometer (EDX) and Fourier Transform Infrared Spectrometer (FTIR). Interaction with metal ions led to the formation of discrete aggregates on the biosorbents surface. The metal ions bound to the active sites of the biosorbents through either electrostatic attraction or complexation mechanism.