Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)...Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.展开更多
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-...Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.展开更多
The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to b...The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.展开更多
Adsorptive enhancements of several water-soluble polymers on copper(Ⅱ) were studied by adsorptive stripping voltammetry with a hanging mercury drop electrode. Increases in peak current of cu(Ⅱ) were observed in al...Adsorptive enhancements of several water-soluble polymers on copper(Ⅱ) were studied by adsorptive stripping voltammetry with a hanging mercury drop electrode. Increases in peak current of cu(Ⅱ) were observed in alkaline carbonate media. The enhancing power of poly(vinyl alcohol), starch and polyallylamine is 15, 4. 1, and 2.5 times, repectively展开更多
Adsorptive enhancements of several inorganic salts on copper(II) were studied by adsorptive stripping voltammetry with a hanging mercury drop electrode Increase in peak curren of cu(II) were observed in alkaline phosp...Adsorptive enhancements of several inorganic salts on copper(II) were studied by adsorptive stripping voltammetry with a hanging mercury drop electrode Increase in peak curren of cu(II) were observed in alkaline phosphate or media owing to adsorption Silicate can also enhance the peak current of Cu(II). The enhancing power phosphate,carbonate, and silicate is 33, 26, and 8.9 times, respectively.展开更多
Nanoscale hierarchically porous metal-organic frameworks(NH-MOFs)synergistically combine the advantages of nanoscale MOFs and hierarchically porous MOFs,resulting in remarkable characteristics such as increased specif...Nanoscale hierarchically porous metal-organic frameworks(NH-MOFs)synergistically combine the advantages of nanoscale MOFs and hierarchically porous MOFs,resulting in remarkable characteristics such as increased specific surface area,greater porosity,and enhanced exposure of active sites.Herein,nanoscale hierarchically porous UIO-66(UIO-66_X)was synthesized using a defect-induced strategy that employed ethylene diamine tetraacetic acid(EDTA)as a modulator.The introduced EDTA occupies the coordination sites of organic ligands,promoting the formation and growth of UIO-66 crystal nuclei and inducing defects during synthesis.The as-synthesized UIO-66_X crystals exhibit a uniform distribution with an average size of approximately 100 nm.In addition,the total pore volume attains a remarkable value of 0.95 cm^(3)g^(-1),with mesopores constituting 36.8% of the structure.Furthermore,the porosities of UIO-66_X can be easily tuned by controlling the molar ratio of EDTA/Zr^(4+).In addition,the as-synthesized UIO-66_X exhibits excellent adsorption capacities for n-hexane(344 mg g^(-1))and pxylene(218 mg g^(-1)),which are 44.5% and 27.5% higher than those of conventional UIO-66,respectively.Finally,the adsorption behavior of n-hexane and p-xylene molecules in UIO-66_X was investigated using density functional theory simulations.展开更多
The development of a simple and facile synthesis route is a highly desirable but challenging process in the fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks(ZIFs).Herein we describe a facil...The development of a simple and facile synthesis route is a highly desirable but challenging process in the fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks(ZIFs).Herein we describe a facile method for rapidly synthesizing hierarchically porous ZIF-90 nanocrystals(particle sizes of~300 nm)using hydroxyl double salts as intermediates at room temperature.The as-synthesized ZIF-90 contained hierarchical porous structures developed using a crystalline interior and a random stack of multiple nanoparticles.Both the morphology and particle size of ZIF-90 nanocrystals could be tuned by controlling the molar ratio of ICA/Zn^(2+).Note that the as-synthesized hierarchically porous ZIF-90 nanocrystals exhibited higher thermal stability compared with the conventional ZIF-90.Because of the introduction of hierarchical porous structures,the resultant hierarchically porous ZIF-90 nanocrystals showed enhanced toluene adsorption capacity than those of conventional metal organic frameworks and zeolites.展开更多
An enhanced adsorption and desorption procedure of Nd(Ⅲ) onto D113-Ⅲ resin were prepared with various chemical methods. Batch studies were carried out with various pH, contact time, temperature and initial concent...An enhanced adsorption and desorption procedure of Nd(Ⅲ) onto D113-Ⅲ resin were prepared with various chemical methods. Batch studies were carried out with various pH, contact time, temperature and initial concentrations, and then column studies were conducted. The results showed that the optimal adsorption condition was at pH value of 6.90. The process was fast initially and arrived equilibrium within 60 h. The resin exhibited a high Nd(Ⅲ) uptake as 232.56 mg/g at 298 K. The adsorption data fitted well with pseudo-second-order kinetic model. Thermodynamic parameters were studied, which indicated that the adsorption process was spontaneous and endothermic. Thomas model was delineated here to predict the breakthrough curves based on the experimental column study data. In the elution test, 1 mol/L HCl solution could achieve a satisfactory elution rate, which indicated that D113-1/1 resin could be regenerated and reused. Finally, the IR spectroscopic technique was undertaken, and a novel adsorption mechanism was proposed.展开更多
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis ...ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.展开更多
基金supported by the National Natural Science Foundation of China(21571038,22035004)the Education Department of Guizhou Province(2021312)+2 种基金the Foundation of Guizhou Province(2019-5666)the National Key R&D Program of China(2017YFA0700101)the State Key Laboratory of Physical Chemistry of Solid Surfaces(Xiamen University,202009)。
文摘Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.
基金supported by the National Natural Science Foundation of China(51902007)。
文摘Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.
基金Supported by the CNPC Huabei Oilfield Science and Technology Development Project(HBYT-CYY-2014-JS-378,HBYT-CYY-2015-JS-47)
文摘The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.
文摘Adsorptive enhancements of several water-soluble polymers on copper(Ⅱ) were studied by adsorptive stripping voltammetry with a hanging mercury drop electrode. Increases in peak current of cu(Ⅱ) were observed in alkaline carbonate media. The enhancing power of poly(vinyl alcohol), starch and polyallylamine is 15, 4. 1, and 2.5 times, repectively
文摘Adsorptive enhancements of several inorganic salts on copper(II) were studied by adsorptive stripping voltammetry with a hanging mercury drop electrode Increase in peak curren of cu(II) were observed in alkaline phosphate or media owing to adsorption Silicate can also enhance the peak current of Cu(II). The enhancing power phosphate,carbonate, and silicate is 33, 26, and 8.9 times, respectively.
基金financial support from the National Natural Science Foundation of China(22008032)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011881,2020A1515110817,2022A1515011192,2023A1515010679,and 2020A1515110325)+1 种基金the Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing(2022B1212010015,GPKLIFM-KF202206)the University Characteristic Innovation Foundation of Guangdong(2021KTSCX114 and 2022KTSCX122)。
文摘Nanoscale hierarchically porous metal-organic frameworks(NH-MOFs)synergistically combine the advantages of nanoscale MOFs and hierarchically porous MOFs,resulting in remarkable characteristics such as increased specific surface area,greater porosity,and enhanced exposure of active sites.Herein,nanoscale hierarchically porous UIO-66(UIO-66_X)was synthesized using a defect-induced strategy that employed ethylene diamine tetraacetic acid(EDTA)as a modulator.The introduced EDTA occupies the coordination sites of organic ligands,promoting the formation and growth of UIO-66 crystal nuclei and inducing defects during synthesis.The as-synthesized UIO-66_X crystals exhibit a uniform distribution with an average size of approximately 100 nm.In addition,the total pore volume attains a remarkable value of 0.95 cm^(3)g^(-1),with mesopores constituting 36.8% of the structure.Furthermore,the porosities of UIO-66_X can be easily tuned by controlling the molar ratio of EDTA/Zr^(4+).In addition,the as-synthesized UIO-66_X exhibits excellent adsorption capacities for n-hexane(344 mg g^(-1))and pxylene(218 mg g^(-1)),which are 44.5% and 27.5% higher than those of conventional UIO-66,respectively.Finally,the adsorption behavior of n-hexane and p-xylene molecules in UIO-66_X was investigated using density functional theory simulations.
基金the National Natural Science Foundation of China(No.21576094)the Guangdong Natural Science Foundation(No.2017A030313052)the Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515110706,2019A1515110259 and 2019A1515110535)。
文摘The development of a simple and facile synthesis route is a highly desirable but challenging process in the fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks(ZIFs).Herein we describe a facile method for rapidly synthesizing hierarchically porous ZIF-90 nanocrystals(particle sizes of~300 nm)using hydroxyl double salts as intermediates at room temperature.The as-synthesized ZIF-90 contained hierarchical porous structures developed using a crystalline interior and a random stack of multiple nanoparticles.Both the morphology and particle size of ZIF-90 nanocrystals could be tuned by controlling the molar ratio of ICA/Zn^(2+).Note that the as-synthesized hierarchically porous ZIF-90 nanocrystals exhibited higher thermal stability compared with the conventional ZIF-90.Because of the introduction of hierarchical porous structures,the resultant hierarchically porous ZIF-90 nanocrystals showed enhanced toluene adsorption capacity than those of conventional metal organic frameworks and zeolites.
基金supported by the National Natural Science Foundation of China(20972138)the Key Grant of Education Department of Zhejiang Province,China(Z200907459)
文摘An enhanced adsorption and desorption procedure of Nd(Ⅲ) onto D113-Ⅲ resin were prepared with various chemical methods. Batch studies were carried out with various pH, contact time, temperature and initial concentrations, and then column studies were conducted. The results showed that the optimal adsorption condition was at pH value of 6.90. The process was fast initially and arrived equilibrium within 60 h. The resin exhibited a high Nd(Ⅲ) uptake as 232.56 mg/g at 298 K. The adsorption data fitted well with pseudo-second-order kinetic model. Thermodynamic parameters were studied, which indicated that the adsorption process was spontaneous and endothermic. Thomas model was delineated here to predict the breakthrough curves based on the experimental column study data. In the elution test, 1 mol/L HCl solution could achieve a satisfactory elution rate, which indicated that D113-1/1 resin could be regenerated and reused. Finally, the IR spectroscopic technique was undertaken, and a novel adsorption mechanism was proposed.
基金supported by the National Natural Science Foundation of China(92061201,21825106,22102155,and 32072304)China Postdoctoral Science Foundation(2021M692909 and 2022T150587)+1 种基金the Program for Innovative Research Team(in Science and Technology)in Universities of Henan Province and Zhengzhou University(19IRSTHN022)the Key Scientific and Technological Project of Henan Province(2021102210027)。
基金supported by the Natural Science Foundation of China(No.21174114)the Ministry of Education Plan for Yangtze River Scholar and Innovation Team Development(No.IRT1177)+2 种基金Scientific and Technical Plan Project of Gansu Province(No. 1204GKCA006)the Natural Science Foundation of Gansu Province (No.1010RJZA024)Scientific and Technical Innovation Project of Northwest Normal University(No.nwnu-kjcxgc-03-63)
文摘ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.