The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics.The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycer...The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics.The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine(DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine(DPPE) by analyzing the data of surface pressure–area(π–A) isotherms and surface pressure–time(π–T) curves.Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 m N/m.However,the changes of DPPE are larger than DPPC,indicating stronger interaction of lysozyme with DPPE than DPPC.The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 m N/m.Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers,which leads to self-aggregation and self-assembly,forming irregular multimers and conical multimeric.Through analysis,we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers.展开更多
Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membr...Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membranes possess hierarchical pores, including cellular macropores across the whole membranes and much small pores in the matrix as well as on the pore walls. Nitrogen adsorption indicates micropores(1.47 and 1.84 nm) and mesopores(2.21 nm) exist inside the carbon membranes, resulting in their specific surface area as large as 1062 m2/g. The carbon membranes were used to adsorb organic dyes(methyl orange, Congo red, and rhodamine B) from aqueous solutions based on their advantages of hierarchical pore structures and large specific surface area. It is particularly noteworthy that the membranes present a selective adsorption towards methyl orange, whose molecular size(1.2 nm) is smaller than those of Congo red(2.3 nm) and rhodamine B(1.8 nm). This attractive result can be attributed to the steric structure matching between the molecular size and the pore size, rather than electrostatic attraction. Furthermore, the used carbon membranes can be easily regenerated by hydrochloric acid, and their recovery adsorption ratio maintains above 90% even in the third cycle. This work may provide a new route for carbon-based adsorbents with hierarchical pores via a template-free approach, which could be promisingly applied to selectively remove dye contaminants in aqueous effluents.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21402114 and 11544009)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2016JM2010)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.GK201603026)the National University Science and Technology Innovation Project of China(Grant No.201610718013)
文摘The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics.The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine(DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine(DPPE) by analyzing the data of surface pressure–area(π–A) isotherms and surface pressure–time(π–T) curves.Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 m N/m.However,the changes of DPPE are larger than DPPC,indicating stronger interaction of lysozyme with DPPE than DPPC.The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 m N/m.Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers,which leads to self-aggregation and self-assembly,forming irregular multimers and conical multimeric.Through analysis,we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers.
基金financially supported by the National Natural Science Foundation of China(No.21174124)K.C.Wong Magna Fund in Ningbo University
文摘Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membranes possess hierarchical pores, including cellular macropores across the whole membranes and much small pores in the matrix as well as on the pore walls. Nitrogen adsorption indicates micropores(1.47 and 1.84 nm) and mesopores(2.21 nm) exist inside the carbon membranes, resulting in their specific surface area as large as 1062 m2/g. The carbon membranes were used to adsorb organic dyes(methyl orange, Congo red, and rhodamine B) from aqueous solutions based on their advantages of hierarchical pore structures and large specific surface area. It is particularly noteworthy that the membranes present a selective adsorption towards methyl orange, whose molecular size(1.2 nm) is smaller than those of Congo red(2.3 nm) and rhodamine B(1.8 nm). This attractive result can be attributed to the steric structure matching between the molecular size and the pore size, rather than electrostatic attraction. Furthermore, the used carbon membranes can be easily regenerated by hydrochloric acid, and their recovery adsorption ratio maintains above 90% even in the third cycle. This work may provide a new route for carbon-based adsorbents with hierarchical pores via a template-free approach, which could be promisingly applied to selectively remove dye contaminants in aqueous effluents.