This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi...This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.展开更多
The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimi...The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimize tissue fibrosis,which can lead to stricture formation.The healing process involves various phases:hemostasis and inflammation,proliferation,and remodeling.Mechanical staplers and sutures can cause inflammation and fibrosis due to the release of profibrotic chemokines.Compression anastomosis devices,including those made of nickel-titanium alloy,offer a minimally invasive option for various surgical challenges and have shown safety and efficacy.However,despite advancements,anastomotic techniques are evaluated based on leakage risk,with complications being a primary concern.Newer devices like Magnamosis use magnetic rings for compression anastomosis,demonstrating greater strength and patency compared to stapling.Magnetic technology is also being explored for other medical treatments.While there are promising results,particularly in animal models,the realworld application in humans is limited,and further research is needed to assess their safety and practicality.展开更多
Multi<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">objective optimization problem (MOOP) is an important class of optimization problem that ensures...Multi<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">objective optimization problem (MOOP) is an important class of optimization problem that ensures users </span><span style="font-family:Verdana;">to </span><span style="font-family:Verdana;">model a large variety of real world applications. In this paper an advanced transformation technique has been proposed to solve MOOP. An algorithm is suggested and the computer application of algorithm has </span><span style="font-family:Verdana;">been </span><span style="font-family:Verdana;">demonstrated by a flow chart. This method is comparatively easy to calculate. Applying on different types of examples, the result indicate</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> that the proposed method gives better solution than other methods and it is less time consuming. Physical presentation and data analysis represent the worth of the method more compactly.</span>展开更多
Multiphasic multidetector computed tomography(CT)forms the mainstay for the characterization of renal masses whereas magnetic resonance imaging(MRI)acts as a problem-solving tool in some cases.However,a few of the ren...Multiphasic multidetector computed tomography(CT)forms the mainstay for the characterization of renal masses whereas magnetic resonance imaging(MRI)acts as a problem-solving tool in some cases.However,a few of the renal masses remain indeterminate even after evaluation by conventional imaging methods.To overcome the deficiency in current imaging techniques,advanced imaging methods have been devised and are being tested.This review will cover the role of contrast-enhanced ultrasonography,shear wave elastography,dual-energy CT,perfusion CT,MR perfusion,diffusion-weighted MRI,blood oxygen leveldependent MRI,MR spectroscopy,positron emission tomography(PET)/prostate-specific membrane antigen-PET in the characterization of renal masses.展开更多
Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as pre...Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.展开更多
A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. T...A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. Then, advancing front high quality point placement is used to generate internal points with optimal positions and a Delaunay method is used to insert them efficiently. Finally, optimization procedures are used for mesh quality improvements. Several application examples are presented to demonstrate the robustness and efficiency of the proposed meshing scheme.展开更多
An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the ma...An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.展开更多
The Advanced Dvorak Technique(ADT)is used by tropical cyclone prediction centres around the world to accurately evaluate the intensity of tropical cyclones(TCs)from meteorological operational satellites.The algorithm ...The Advanced Dvorak Technique(ADT)is used by tropical cyclone prediction centres around the world to accurately evaluate the intensity of tropical cyclones(TCs)from meteorological operational satellites.The algorithm development team has introduced new improvements to the objective ADT to further extend its capabilities and accuracy.A study has therefore undergone to evaluate the new edition of ADT(9.0)based on all the North Indian Ocean Tropical cyclones during 2018,2019 and 2020(Total 15 No.).It is found that ADT(9.0)performed well with the conformity of IMD’s best track T.No estimates.ADT is reasonably good in estimating the intensity for T≥4.0(VSCS to SuCS)and overestimate the intensity for T≤3.5(CS/SCS).展开更多
Solid-state batteries(SSBs)are attracting growing interest as long-lasting,thermally resilient,and high-safe energy storage systems.As an emerging area of battery chemistry,there are many issues with SSBs,including st...Solid-state batteries(SSBs)are attracting growing interest as long-lasting,thermally resilient,and high-safe energy storage systems.As an emerging area of battery chemistry,there are many issues with SSBs,including strongly reductive lithium anodes,oxidized cathodes(state of charge),the thermodynamic stability limits of solid-state electrolytes(SSEs),and the ubiquitous and critical interfaces.In this Review,we provided an overview of the main obstacles in the development of SSBs,such as the lithium anode|SSEs interface,the cathode|SSEs interface,lithium-ion transport in the SSEs,and the root origin of lithium intrusions,as well as the safety issues caused by the dendrites.Understanding and overcoming these obstacles are crucial but also extremely challenging as the localized and buried nature of the intimate contact between electrode and SSEs makes direct detection difficult.We reviewed advanced characterization techniques and discussed the complex ion/electron-transport mechanism that have been plaguing electrochemists.Finally,we focused on studying and revealing the coupled electro-chemo-mechanical behavior occurring in the lithium anode,cathode,SSEs,and beyond.展开更多
Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer ...Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer from irreversible structural degradation,fast capacity attenuation as well as seriously reduced safety in their practical applications.Doping strategies with different elements have been employed to address the above issues.In this review,we summarize the research advances of the elemental doping in a Ni-rich layered oxide cathode.The experimental methods and dopant selection rules are briefly introduced.Then we discuss here the effects of the elemental doping from the aspects of the crystal lattice,electronic structure,nanomorphology,and surface stability.In addition,this review surveys the first-principles calculation and advanced structural characterization techniques,which have played important roles in elucidating the structure-performance correlations.Finally,perspectives regarding the future of doping strategy are given.展开更多
With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of l...With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of lithiumion batteries(LIBs)can be attributed to their numerous advantages,including high energy density,high operating voltage,environmental friendliness,and lack of memory effect.However,the progress of LIBs is currently hindered by the limitations of energy storage materials,which serve as vital components.Therefore,there is an urgent need to address the development of a new generation of high-rate energy storage materials in order to overcome these limitations and further advance LIB technology.Niobium-based oxides have emerged as promising candidates for the fabrication of fast-charging Li-ion batteries due to their excellent rate capability and long lifespan.This review paper provides a comprehensive analysis of the fundamentals,methodologies,and electrochemistries of niobium-based oxides,with a specific focus on the evolution and creation of crystal phases of Nb_(2)O_(5),fundamental electrochemical behavior,and modification methods including morphology modulation,composite technology,and carbon coating.Furthermore,the review explores Nb_(2)O_(5)-derived compounds and related advanced characterization techniques.Finally,the challenges and issues in the development of niobiumbased oxides for high-rate energy storage batteries are discussed,along with future research perspectives.展开更多
This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, ...This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and various techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.展开更多
The ancient books on traditional Chinese medicine(TCM) are the source of knowledge for TCM physicians. Therapeutic principles and therapeutic methods for healing many diseases are recorded in these ancient TCM books, ...The ancient books on traditional Chinese medicine(TCM) are the source of knowledge for TCM physicians. Therapeutic principles and therapeutic methods for healing many diseases are recorded in these ancient TCM books, providing a huge number of references for modern TCM physicians on conducting diagnosis and administering treatment for different diseases. The ancient TCM books can be dated back thousands of years, and this vast knowledge is recorded in different medical books in the form of text. However, it is difficult to systematically assimilate much information in ancient TCM books. At present, many researchers are applying advanced analytical techniques to analyze the text data in the ancient TCM books. Advanced techniques that have been applied include database construction, cognitive linguistic analysis, fuzzy logic, data mining, and artificial intelligence(AI) technology. There are different characteristics in these advanced analytical techniques. In this study, we comprehensively review recent advances in these techniques applied to the study of ancient TCM books. Furthermore, as AI technology is increasingly utilized in the medical field as well as in the study of ancient TCM books, we also review the application of AI technology to the study of ancient TCM books.展开更多
A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique(AFT)and conforming Delaunay triangulation.Given a triangulated surface mesh,AFT is firstly applied to ...A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique(AFT)and conforming Delaunay triangulation.Given a triangulated surface mesh,AFT is firstly applied to mesh several layers of elements adjacent to the boundary.The rest of the domain is then meshed by the conforming Delaunay triangulation.The non-conformal interface between two parts of meshes are adjusted.Mesh refinement and mesh optimization are then preformed to obtain a more reasonable-sized mesh with better quality.Robustness and quality of the proposed method is shown.Convergence proof of each stage as well as the whole algorithm is provided.Various numerical examples are included as well as the quality of the meshes.展开更多
文摘This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.
文摘The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimize tissue fibrosis,which can lead to stricture formation.The healing process involves various phases:hemostasis and inflammation,proliferation,and remodeling.Mechanical staplers and sutures can cause inflammation and fibrosis due to the release of profibrotic chemokines.Compression anastomosis devices,including those made of nickel-titanium alloy,offer a minimally invasive option for various surgical challenges and have shown safety and efficacy.However,despite advancements,anastomotic techniques are evaluated based on leakage risk,with complications being a primary concern.Newer devices like Magnamosis use magnetic rings for compression anastomosis,demonstrating greater strength and patency compared to stapling.Magnetic technology is also being explored for other medical treatments.While there are promising results,particularly in animal models,the realworld application in humans is limited,and further research is needed to assess their safety and practicality.
文摘Multi<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">objective optimization problem (MOOP) is an important class of optimization problem that ensures users </span><span style="font-family:Verdana;">to </span><span style="font-family:Verdana;">model a large variety of real world applications. In this paper an advanced transformation technique has been proposed to solve MOOP. An algorithm is suggested and the computer application of algorithm has </span><span style="font-family:Verdana;">been </span><span style="font-family:Verdana;">demonstrated by a flow chart. This method is comparatively easy to calculate. Applying on different types of examples, the result indicate</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> that the proposed method gives better solution than other methods and it is less time consuming. Physical presentation and data analysis represent the worth of the method more compactly.</span>
文摘Multiphasic multidetector computed tomography(CT)forms the mainstay for the characterization of renal masses whereas magnetic resonance imaging(MRI)acts as a problem-solving tool in some cases.However,a few of the renal masses remain indeterminate even after evaluation by conventional imaging methods.To overcome the deficiency in current imaging techniques,advanced imaging methods have been devised and are being tested.This review will cover the role of contrast-enhanced ultrasonography,shear wave elastography,dual-energy CT,perfusion CT,MR perfusion,diffusion-weighted MRI,blood oxygen leveldependent MRI,MR spectroscopy,positron emission tomography(PET)/prostate-specific membrane antigen-PET in the characterization of renal masses.
文摘Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.
文摘A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. Then, advancing front high quality point placement is used to generate internal points with optimal positions and a Delaunay method is used to insert them efficiently. Finally, optimization procedures are used for mesh quality improvements. Several application examples are presented to demonstrate the robustness and efficiency of the proposed meshing scheme.
基金Project(51378457)supported by the National Natural Science Foundation of China
文摘An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.
文摘The Advanced Dvorak Technique(ADT)is used by tropical cyclone prediction centres around the world to accurately evaluate the intensity of tropical cyclones(TCs)from meteorological operational satellites.The algorithm development team has introduced new improvements to the objective ADT to further extend its capabilities and accuracy.A study has therefore undergone to evaluate the new edition of ADT(9.0)based on all the North Indian Ocean Tropical cyclones during 2018,2019 and 2020(Total 15 No.).It is found that ADT(9.0)performed well with the conformity of IMD’s best track T.No estimates.ADT is reasonably good in estimating the intensity for T≥4.0(VSCS to SuCS)and overestimate the intensity for T≤3.5(CS/SCS).
基金Talent Scientific Research Project of Qilu University of Technology,Grant/Award Number:2023RCKY181Natural Science Foundation of Shandong Province Youth Project,Grant/Award Number:ZR2022QB178 ZR2020QB197+3 种基金National Natural Science Foundation of China,Grant/Award Numbers:52272136,22108135Natural Science Foundation of Jiangsu province,Grant/Award Number:BK20221402Special Support of China Postdoctoral Science Founudation,Grant/Award Number:2023T160471Basic Research Project of Science,Education and Production Integration Pilot Project。
文摘Solid-state batteries(SSBs)are attracting growing interest as long-lasting,thermally resilient,and high-safe energy storage systems.As an emerging area of battery chemistry,there are many issues with SSBs,including strongly reductive lithium anodes,oxidized cathodes(state of charge),the thermodynamic stability limits of solid-state electrolytes(SSEs),and the ubiquitous and critical interfaces.In this Review,we provided an overview of the main obstacles in the development of SSBs,such as the lithium anode|SSEs interface,the cathode|SSEs interface,lithium-ion transport in the SSEs,and the root origin of lithium intrusions,as well as the safety issues caused by the dendrites.Understanding and overcoming these obstacles are crucial but also extremely challenging as the localized and buried nature of the intimate contact between electrode and SSEs makes direct detection difficult.We reviewed advanced characterization techniques and discussed the complex ion/electron-transport mechanism that have been plaguing electrochemists.Finally,we focused on studying and revealing the coupled electro-chemo-mechanical behavior occurring in the lithium anode,cathode,SSEs,and beyond.
基金funding support from the National Key Research and Development Program of China(grant no.2020YFB2007400)the National Natural Science Foundation of China(grant no.22075317)the Strategic Priority Research Program(B)(grant no.XDB07030200)of the Chinese Academy of Sciences.
文摘Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer from irreversible structural degradation,fast capacity attenuation as well as seriously reduced safety in their practical applications.Doping strategies with different elements have been employed to address the above issues.In this review,we summarize the research advances of the elemental doping in a Ni-rich layered oxide cathode.The experimental methods and dopant selection rules are briefly introduced.Then we discuss here the effects of the elemental doping from the aspects of the crystal lattice,electronic structure,nanomorphology,and surface stability.In addition,this review surveys the first-principles calculation and advanced structural characterization techniques,which have played important roles in elucidating the structure-performance correlations.Finally,perspectives regarding the future of doping strategy are given.
基金This work was financially supported by“Hundred Young Talents Program”(No.263113491)from Guangdong University of Technology.
文摘With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of lithiumion batteries(LIBs)can be attributed to their numerous advantages,including high energy density,high operating voltage,environmental friendliness,and lack of memory effect.However,the progress of LIBs is currently hindered by the limitations of energy storage materials,which serve as vital components.Therefore,there is an urgent need to address the development of a new generation of high-rate energy storage materials in order to overcome these limitations and further advance LIB technology.Niobium-based oxides have emerged as promising candidates for the fabrication of fast-charging Li-ion batteries due to their excellent rate capability and long lifespan.This review paper provides a comprehensive analysis of the fundamentals,methodologies,and electrochemistries of niobium-based oxides,with a specific focus on the evolution and creation of crystal phases of Nb_(2)O_(5),fundamental electrochemical behavior,and modification methods including morphology modulation,composite technology,and carbon coating.Furthermore,the review explores Nb_(2)O_(5)-derived compounds and related advanced characterization techniques.Finally,the challenges and issues in the development of niobiumbased oxides for high-rate energy storage batteries are discussed,along with future research perspectives.
基金financial support during The Next Detectors for Gravitational Wave Astronomy workshop in Beijing in 2015
文摘This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and various techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.
基金the China Postdoctoral Science Foundation (Grant No. 2019M650598)the Fundamental Research Funds for the Central Universities (Grant No. 2019-JYB-JS-005)。
文摘The ancient books on traditional Chinese medicine(TCM) are the source of knowledge for TCM physicians. Therapeutic principles and therapeutic methods for healing many diseases are recorded in these ancient TCM books, providing a huge number of references for modern TCM physicians on conducting diagnosis and administering treatment for different diseases. The ancient TCM books can be dated back thousands of years, and this vast knowledge is recorded in different medical books in the form of text. However, it is difficult to systematically assimilate much information in ancient TCM books. At present, many researchers are applying advanced analytical techniques to analyze the text data in the ancient TCM books. Advanced techniques that have been applied include database construction, cognitive linguistic analysis, fuzzy logic, data mining, and artificial intelligence(AI) technology. There are different characteristics in these advanced analytical techniques. In this study, we comprehensively review recent advances in these techniques applied to the study of ancient TCM books. Furthermore, as AI technology is increasingly utilized in the medical field as well as in the study of ancient TCM books, we also review the application of AI technology to the study of ancient TCM books.
基金Singapore MOE ARC 29/07 T207B2202,MOE RG 59/08 M52110092,NRF 2007IDM-IDM 002-010Natural Science Foundation of China 10971226 and 91130013,973 Program of China 2009CB723800the foundation of State Key Laboratory of Aerodynamics.
文摘A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique(AFT)and conforming Delaunay triangulation.Given a triangulated surface mesh,AFT is firstly applied to mesh several layers of elements adjacent to the boundary.The rest of the domain is then meshed by the conforming Delaunay triangulation.The non-conformal interface between two parts of meshes are adjusted.Mesh refinement and mesh optimization are then preformed to obtain a more reasonable-sized mesh with better quality.Robustness and quality of the proposed method is shown.Convergence proof of each stage as well as the whole algorithm is provided.Various numerical examples are included as well as the quality of the meshes.