A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of...A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of the conventional electrified railway. Due to the large number of MMCACTPS system modules, I/O resources and computing speed have high requirements on processors. Moreover, the module capacitor balance is challenging because the sorting time is too long when the traditional sorting algorithm for voltage balance is used. To solve the above issues, a digital implementation scheme of flexible power control strategy for three-phase to single-phase MMC-ACTPS system based on field programmable gate array(FPGA), which has sufficient I/O resources, has been proposed. Due to the parallel execution characteristics of the FPGA, the execution time of the controller and the modulator can be greatly reduced compared with a digital signal processor(DSP) + FPGA or DSpace. In addition, an improved sorting algorithm is proposed to reduce the sorting time and the implementation steps are analyzed. Finally, simulation and experimental results are presented to demonstrate the effectiveness and correctness of the proposed control strategy.展开更多
Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for opti...Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.展开更多
Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system w...Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.展开更多
目前在牵引供电系统对电力系统的影响研究中,大多只单一对牵引供电系统建立详细仿真模型,而电力系统侧则是采用简化后的电路代替,缺乏一种实际电力系统与牵引供电系统的联合仿真模型,对电力系统–牵引供电系统的相互作用与影响认识不足...目前在牵引供电系统对电力系统的影响研究中,大多只单一对牵引供电系统建立详细仿真模型,而电力系统侧则是采用简化后的电路代替,缺乏一种实际电力系统与牵引供电系统的联合仿真模型,对电力系统–牵引供电系统的相互作用与影响认识不足。文中在牵引供电系统电磁仿真模型的基础上,基于电力系统全数字仿真装置(advanced digital power system simulator,ADPSS)搭建出了牵引供电系统与实际电网系统的机电–电磁暂态混合仿真模型,并将混合仿真计算结果与典型值相比较,验证了混合仿真的正确性,并研究分析了牵引供电系统负荷特性、牵引供电系统对电力系统的影响。展开更多
基金supported in part by the National Rail Transportation Electrification and Automation Engineering Technology Research Center (No.NEEC-2019-A04)in part by the National Key R&D Program of China (No.2021YFB2601500)+1 种基金in part by the National Natural Science Foundation of China (No.52077183)the National Science Foundation for Young Scientists of China (No.52207138)。
文摘A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of the conventional electrified railway. Due to the large number of MMCACTPS system modules, I/O resources and computing speed have high requirements on processors. Moreover, the module capacitor balance is challenging because the sorting time is too long when the traditional sorting algorithm for voltage balance is used. To solve the above issues, a digital implementation scheme of flexible power control strategy for three-phase to single-phase MMC-ACTPS system based on field programmable gate array(FPGA), which has sufficient I/O resources, has been proposed. Due to the parallel execution characteristics of the FPGA, the execution time of the controller and the modulator can be greatly reduced compared with a digital signal processor(DSP) + FPGA or DSpace. In addition, an improved sorting algorithm is proposed to reduce the sorting time and the implementation steps are analyzed. Finally, simulation and experimental results are presented to demonstrate the effectiveness and correctness of the proposed control strategy.
文摘Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.
基金supported by the National Natural Science Funds of China (Nos. 51307143 and 51307142)Technology Research and Development Program of China Railway Corporation (No. 2014J009-B)
文摘Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.
文摘目前在牵引供电系统对电力系统的影响研究中,大多只单一对牵引供电系统建立详细仿真模型,而电力系统侧则是采用简化后的电路代替,缺乏一种实际电力系统与牵引供电系统的联合仿真模型,对电力系统–牵引供电系统的相互作用与影响认识不足。文中在牵引供电系统电磁仿真模型的基础上,基于电力系统全数字仿真装置(advanced digital power system simulator,ADPSS)搭建出了牵引供电系统与实际电网系统的机电–电磁暂态混合仿真模型,并将混合仿真计算结果与典型值相比较,验证了混合仿真的正确性,并研究分析了牵引供电系统负荷特性、牵引供电系统对电力系统的影响。