In this paper, a security protocol for the advanced metering infrastructure (AMI) in smart grid is proposed. Through the AMI, customers and the service provider achieve two-way communication. Real-time monitoring an...In this paper, a security protocol for the advanced metering infrastructure (AMI) in smart grid is proposed. Through the AMI, customers and the service provider achieve two-way communication. Real-time monitoring and demand response can be applied because of the information exchanged. Since the information contains much privacy of the customer, and the control messages need to be authenticated, security needs to be ensured for the communication in the AM1. Due to the complicated network structure of the AMI, the asymmetric communications, and various security requirements, existing security protocols for other networks can hardly be applied into the AMI directly. Therefore, a security protocol specifically for the AMI to meet the security requirements is proposed. Our proposed security protocol includes initial authentication, secure uplink data aggregation, secure downlink data transmission, and domain secrets update. Compared with existing researches in related areas, our proposed security protocol takes the asymmetric communications of the AMI and various security requirements in smart grid into consideration.展开更多
The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This pape...The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This paper reports the development of an Advanced Metering Infrastructure (AMI) as an effective tool to reshape the load profile of EV charging by adopting appropriate demand side management strategy. This paper presents a total solution for EV charging service platform (EVAMI) based on power line and internet communication. It must be stressed that the development of Third Party Customer Service Platform in this investigation facilitates a single bill to be issued to EV owners. Hence, EV owners understand their energy usage and thus may perform energy saving activity efficiently. Experiment and evaluation of the proposed system show that the throughput achieved is about 5 Mbps at 10 ms end to end delay in Power line Communication. By introducing two dimensional dynamic pricing and charging schedule, the proposed EVAMI successfully reduces 36% peak consumption and increases the “off peak” consumption by 54%. Therefore the EVAMI does not only reduce the peak consumption but also relocates the energy demand effectively.展开更多
Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need...Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need for an environmentally friendly system that is transparent,sustainable,cost-saving,energy-efficient,agile and secure.This paper provides an overview of the emerging technologies behind smart grids and the internet of things.The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted and reliable power supply.In addition,the paper sorts out challenges in the traditional or legacy electricity grid,power generation,transmission,distribution,and revenue management challenges such as reduc-ing aggregate technical and commercial loss by reforming the existing manual or semi-automatic techniques to fully smart or automatic systems.This article represents a concise review of research works in creating components of the smart grid like smart metering infrastructure for postpaid as well as in prepaid mode,internal structure comparison of advanced metering methods in present scenarios,and communication systems.展开更多
针对高级量测体系中的海量数据问题,首次引入压缩感知以克服传统数据压缩方法的不足,深入探索了基于压缩感知的高级量测体系(advanced metering infrastructure based on compressed sensing,AMI-CS)。首先,在分析各类数据特点的基础上...针对高级量测体系中的海量数据问题,首次引入压缩感知以克服传统数据压缩方法的不足,深入探索了基于压缩感知的高级量测体系(advanced metering infrastructure based on compressed sensing,AMI-CS)。首先,在分析各类数据特点的基础上,提出了基于时间和基于空间的2种基本模型及其选取原则;然后,设计模型中的关键要素,提出分类K-SVD稀疏基和适用于时间模型的优选重构算法,并设置二进稀疏测量方式、通用重构算法及适用采集参数;基于此,形成了AMI-CS具体构建方案。实验结果表明,所提出的AMI-CS方案关键要素均具合理性,优于CS传统要素且较传统压缩提升了抗丢包性,通过合理选择压缩比,数据重构信噪比在58 dB以上、重构误差在0.24%以下,满足AMI要求。展开更多
An advanced metering infrastructure(AMI)system plays a key role in the smart grid(SG),but it is vulnerable to cyberattacks.Current detection methods for AMI cyberattacks mainly focus on the data center or a distribute...An advanced metering infrastructure(AMI)system plays a key role in the smart grid(SG),but it is vulnerable to cyberattacks.Current detection methods for AMI cyberattacks mainly focus on the data center or a distributed independent node.On one hand,it is difficult to train an excellent detection intrusion model on a self-learning independent node.On the other hand,large amounts of data are shared over the network and uploaded to a central node for training.These processes may compromise data privacy,cause communication delay,and incur high communication costs.With these limitations,we propose an intrusion detection method for AMI system based on federated learning(FL).The intrusion detection system is deployed in the data concentrators for training,and only its model parameters are communicated to the data center.Furthermore,the data center distributes the learning to each data concentrator through aggregation and weight assignments for collaborative learning.An optimized deep neural network(DNN)is exploited for this proposed method,and extensive experiments based on the NSL-KDD dataset are carried out.From the results,this proposed method improves detection performance and reduces computation costs,communication delays,and communication overheads while guaranteeing data privacy.展开更多
基金supported by the National Science Fourdation under Grant No.CNS-1423408
文摘In this paper, a security protocol for the advanced metering infrastructure (AMI) in smart grid is proposed. Through the AMI, customers and the service provider achieve two-way communication. Real-time monitoring and demand response can be applied because of the information exchanged. Since the information contains much privacy of the customer, and the control messages need to be authenticated, security needs to be ensured for the communication in the AM1. Due to the complicated network structure of the AMI, the asymmetric communications, and various security requirements, existing security protocols for other networks can hardly be applied into the AMI directly. Therefore, a security protocol specifically for the AMI to meet the security requirements is proposed. Our proposed security protocol includes initial authentication, secure uplink data aggregation, secure downlink data transmission, and domain secrets update. Compared with existing researches in related areas, our proposed security protocol takes the asymmetric communications of the AMI and various security requirements in smart grid into consideration.
文摘The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This paper reports the development of an Advanced Metering Infrastructure (AMI) as an effective tool to reshape the load profile of EV charging by adopting appropriate demand side management strategy. This paper presents a total solution for EV charging service platform (EVAMI) based on power line and internet communication. It must be stressed that the development of Third Party Customer Service Platform in this investigation facilitates a single bill to be issued to EV owners. Hence, EV owners understand their energy usage and thus may perform energy saving activity efficiently. Experiment and evaluation of the proposed system show that the throughput achieved is about 5 Mbps at 10 ms end to end delay in Power line Communication. By introducing two dimensional dynamic pricing and charging schedule, the proposed EVAMI successfully reduces 36% peak consumption and increases the “off peak” consumption by 54%. Therefore the EVAMI does not only reduce the peak consumption but also relocates the energy demand effectively.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A03043144)Woosong University Academic Research in 2022.
文摘Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need for an environmentally friendly system that is transparent,sustainable,cost-saving,energy-efficient,agile and secure.This paper provides an overview of the emerging technologies behind smart grids and the internet of things.The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted and reliable power supply.In addition,the paper sorts out challenges in the traditional or legacy electricity grid,power generation,transmission,distribution,and revenue management challenges such as reduc-ing aggregate technical and commercial loss by reforming the existing manual or semi-automatic techniques to fully smart or automatic systems.This article represents a concise review of research works in creating components of the smart grid like smart metering infrastructure for postpaid as well as in prepaid mode,internal structure comparison of advanced metering methods in present scenarios,and communication systems.
文摘针对高级量测体系中的海量数据问题,首次引入压缩感知以克服传统数据压缩方法的不足,深入探索了基于压缩感知的高级量测体系(advanced metering infrastructure based on compressed sensing,AMI-CS)。首先,在分析各类数据特点的基础上,提出了基于时间和基于空间的2种基本模型及其选取原则;然后,设计模型中的关键要素,提出分类K-SVD稀疏基和适用于时间模型的优选重构算法,并设置二进稀疏测量方式、通用重构算法及适用采集参数;基于此,形成了AMI-CS具体构建方案。实验结果表明,所提出的AMI-CS方案关键要素均具合理性,优于CS传统要素且较传统压缩提升了抗丢包性,通过合理选择压缩比,数据重构信噪比在58 dB以上、重构误差在0.24%以下,满足AMI要求。
基金supported in part by the National Natural Science Foundation of China(No.51807013)the Foundation of Hunan Educational Committee(No.18B137)+1 种基金the Research Project in Hunan Province Education Department(No.21C0577)Postgraduate Research and Innovation Project of Hunan Province,China(No.CX20210791)。
文摘An advanced metering infrastructure(AMI)system plays a key role in the smart grid(SG),but it is vulnerable to cyberattacks.Current detection methods for AMI cyberattacks mainly focus on the data center or a distributed independent node.On one hand,it is difficult to train an excellent detection intrusion model on a self-learning independent node.On the other hand,large amounts of data are shared over the network and uploaded to a central node for training.These processes may compromise data privacy,cause communication delay,and incur high communication costs.With these limitations,we propose an intrusion detection method for AMI system based on federated learning(FL).The intrusion detection system is deployed in the data concentrators for training,and only its model parameters are communicated to the data center.Furthermore,the data center distributes the learning to each data concentrator through aggregation and weight assignments for collaborative learning.An optimized deep neural network(DNN)is exploited for this proposed method,and extensive experiments based on the NSL-KDD dataset are carried out.From the results,this proposed method improves detection performance and reduces computation costs,communication delays,and communication overheads while guaranteeing data privacy.