The capabilities of cloud-resolving numerical models, observational instruments and cloud seeding have improved greatly over recent years in China. The subject of this review focuses on the main progresses made in Chi...The capabilities of cloud-resolving numerical models, observational instruments and cloud seeding have improved greatly over recent years in China. The subject of this review focuses on the main progresses made in China in the areas of cloud modeling, field observations, aerosol–cloud interactions, the effects of urbanization on cloud and precipitation, and weather modification.Well-equipped aircraft and ground-based advanced Doppler and polarized radars have been rapidly applied in cloudseeding operations. The combined use of modern techniques such as the Global Positioning System, remote sensing, and Geographical Information Systems has greatly decreased the blindness and uncertainties in weather-modification activities.Weather-modification models based on state-of-the-art cloud-resolving models are operationally run at the National Weather Modification Centre in China for guiding weather-modification programs.Despite important progress having been made, many critical issues or challenges remain to be solved, or require stronger scientific evidence and support, such as the chain of physical events involved in the effects induced by cloud seeding. Current important progresses in measurements and seeding techniques provide the opportunity and possibility to reduce these deficiencies. Long-term scientific projects aimed at reducing these key uncertainties are extremely urgent and important for weather-modification activities in China.展开更多
Rapid and significant advances in issues relevant to weather modification have been made in the last decade in China due to high water resource stresses and severe weather hazards induced by climate change. This paper...Rapid and significant advances in issues relevant to weather modification have been made in the last decade in China due to high water resource stresses and severe weather hazards induced by climate change. This paper reported some progress in aspects of theoretical modeling, field experiment and cloud-seeding tools, as well as research projects regarding weather modification during the ten years from 1997 to 2007. More advanced theoretical models such as cloud models with bin-microphysics and glaciogenic and hygroscopic seeding processes, and mesoscale cloud-resolving models with AgI-seeding processes have been developed to study seeding-induced changes of cloud structure and precipitation as well as to understand critical issues in association with weather modification. More advanced cloud-seeding tools such as mobile ground-based launching system of AgI-rockets and aircraft-based AgI-flares have been developed and used in operation. Several important projects aimed at exploring weather modification techniques and their applications have been conducted during this period.展开更多
A review of China cloud physics research during 2003-2006 is made in this paper. The studies on cloud field experiments and observation, cloud physics and precipitation, including its theoretical applications in hail ...A review of China cloud physics research during 2003-2006 is made in this paper. The studies on cloud field experiments and observation, cloud physics and precipitation, including its theoretical applications in hail suppression and artificial rain enhancement, cloud physics and lightning, and clouds and climate change are included. Due primarily to the demand from weather modification activities, the issue of cloud physics and weather modification has been addressed in China with many field experiments and model studies. While cloud physics and weather modification is still an important research field, the interaction between aerosol, cloud and radiation processes, which is the key issue of current climate change research, has become a new research direction in China over the past four years.展开更多
基金jointly sponsored by the Chinese Natural Science Foundation (Grant Nos. 41005072 and 40575003)the Key Science and Technology Supporting Project of the Ministry of Science and Technology of China (Grant Nos. 2006BAC12B03 and GYHY200806001)the Third Tibetan Plateau Scientific Experiment: Observations for Boundary Layer and Troposphere (GYHY201406001)
文摘The capabilities of cloud-resolving numerical models, observational instruments and cloud seeding have improved greatly over recent years in China. The subject of this review focuses on the main progresses made in China in the areas of cloud modeling, field observations, aerosol–cloud interactions, the effects of urbanization on cloud and precipitation, and weather modification.Well-equipped aircraft and ground-based advanced Doppler and polarized radars have been rapidly applied in cloudseeding operations. The combined use of modern techniques such as the Global Positioning System, remote sensing, and Geographical Information Systems has greatly decreased the blindness and uncertainties in weather-modification activities.Weather-modification models based on state-of-the-art cloud-resolving models are operationally run at the National Weather Modification Centre in China for guiding weather-modification programs.Despite important progress having been made, many critical issues or challenges remain to be solved, or require stronger scientific evidence and support, such as the chain of physical events involved in the effects induced by cloud seeding. Current important progresses in measurements and seeding techniques provide the opportunity and possibility to reduce these deficiencies. Long-term scientific projects aimed at reducing these key uncertainties are extremely urgent and important for weather-modification activities in China.
基金sponsored by the National Natural Science Foundation of China(Grant Nos. 40333033 and 40575003)the NationalKey Science and Technology Supporting Program of theMinistry of Science and Technology of China (Grant No.2006BAC12B03).
文摘Rapid and significant advances in issues relevant to weather modification have been made in the last decade in China due to high water resource stresses and severe weather hazards induced by climate change. This paper reported some progress in aspects of theoretical modeling, field experiment and cloud-seeding tools, as well as research projects regarding weather modification during the ten years from 1997 to 2007. More advanced theoretical models such as cloud models with bin-microphysics and glaciogenic and hygroscopic seeding processes, and mesoscale cloud-resolving models with AgI-seeding processes have been developed to study seeding-induced changes of cloud structure and precipitation as well as to understand critical issues in association with weather modification. More advanced cloud-seeding tools such as mobile ground-based launching system of AgI-rockets and aircraft-based AgI-flares have been developed and used in operation. Several important projects aimed at exploring weather modification techniques and their applications have been conducted during this period.
基金We acknowledge the support from the National Natural Science Foundation of China under Grant Nos. 40433008, 40333033 and 40475002from the Beijing Natural Science Foundation under Grant No. 80710002.
文摘A review of China cloud physics research during 2003-2006 is made in this paper. The studies on cloud field experiments and observation, cloud physics and precipitation, including its theoretical applications in hail suppression and artificial rain enhancement, cloud physics and lightning, and clouds and climate change are included. Due primarily to the demand from weather modification activities, the issue of cloud physics and weather modification has been addressed in China with many field experiments and model studies. While cloud physics and weather modification is still an important research field, the interaction between aerosol, cloud and radiation processes, which is the key issue of current climate change research, has become a new research direction in China over the past four years.