期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
The Stability Research for the Finite Difference Scheme of a Nonlinear Reaction-diffusion Equation 被引量:6
1
作者 XU Chen-mei 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第2期222-227,共6页
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ... In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme. 展开更多
关键词 reaction-diffusion equation finite difference scheme stability research variational approximation method
下载PDF
Reduced finite difference scheme and error estimates based on POD method for non-stationary Stokes equation
2
作者 罗振东 欧秋兰 谢正辉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第7期847-858,共12页
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in th... The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation. 展开更多
关键词 finite difference scheme proper orthogonal decomposition error estimate non-stationary Stokes equation
下载PDF
Two Energy-Preserving Compact Finite Difference Schemes for the Nonlinear Fourth-Order Wave Equation
3
作者 Xiaoyi Liu Tingchun Wang +1 位作者 Shilong Jin Qiaoqiao Xu 《Communications on Applied Mathematics and Computation》 2022年第4期1509-1530,共22页
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from... In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties. 展开更多
关键词 Nonlinear fourth-order wave equation Compact finite difference scheme Error estimate Energy conservation Iterative algorithm
下载PDF
Analysis of an Implicit Finite Difference Scheme for Time Fractional Diffusion Equation 被引量:1
4
作者 MA Yan 《Chinese Quarterly Journal of Mathematics》 2016年第1期69-81,共13页
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim... Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper. 展开更多
关键词 time fractional diffusion equation finite difference approximation implicit scheme STABILITY CONVERGENCE EFFECTIVENESS
下载PDF
Compact finite difference schemes for the backward fractional Feynman–Kac equation with fractional substantial derivative
5
作者 Jiahui Hu Jungang Wang +1 位作者 Yufeng Nie Yanwei Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期226-236,共11页
The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, wher... The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods. 展开更多
关键词 BACKWARD FRACTIONAL Feynman-Kac equation FRACTIONAL substantial DERIVATIVE compact finite difference scheme numerical inversion of LAPLACE transforms
下载PDF
A TVD-WAF-based hybrid finite volume and finite difference scheme for nonlinearly dispersive wave equations
6
作者 Jing Yin Jia-wen Sun Zi-feng Jiao 《Water Science and Engineering》 EI CAS CSCD 2015年第3期239-247,共9页
A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing e... A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth- order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge- Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter. 展开更多
关键词 Hybrid scheme finite volume method (FVM) finite difference method (FDM) Total variation diminishing-weighted average flux (TVD-WAF) Boussinesq-type equations Nonlinear shallow water equations (NSWEs)
下载PDF
On the Conservative Finite Difference Scheme for the Generalized Novikov Equation
7
作者 Wenxia Chen Qianqian Zhu Ping Yang 《Journal of Applied Mathematics and Physics》 2017年第9期1776-1790,共15页
In this paper, we investigate a numerical method for the generalized Novikov equation. We propose a conservative finite difference scheme and use Brouwer fixed point theorem to obtain the existence of the solution of ... In this paper, we investigate a numerical method for the generalized Novikov equation. We propose a conservative finite difference scheme and use Brouwer fixed point theorem to obtain the existence of the solution of the corresponding difference equation. We also prove the convergence and stability of the solution by using the discrete energy method. Moreover, we obtain the truncation error of the difference scheme which is . 展开更多
关键词 Generalized NOVIKOV equation finite difference scheme CONSERVATION Law Stability Convergence
下载PDF
A Numerical Solution of Heat Equation for Several Thermal Diffusivity Using Finite Difference Scheme with Stability Conditions
8
作者 Wahida Zaman Loskor Rama Sarkar 《Journal of Applied Mathematics and Physics》 2022年第2期449-465,共17页
The heat equation is a second-order parabolic partial differential equation, which can be solved in many ways using numerical methods. This paper provides a numerical solution that uses the finite difference method li... The heat equation is a second-order parabolic partial differential equation, which can be solved in many ways using numerical methods. This paper provides a numerical solution that uses the finite difference method like the explicit center difference method. The forward time and centered space (FTCS) is used to a problem containing the one-dimensional heat equation and the stability condition of the scheme is reported with different thermal conductivity of different materials. In this study, results obtained for different thermal conductivity of distinct materials are compared. Also, the results reveal the well-behavior properties of the materials in good agreement. 展开更多
关键词 Heat equation finite-difference scheme Explicit Centered difference scheme Thermal Diffusivity
下载PDF
A Finite Difference Scheme for Blow-Up Solutions of Nonlinear Wave Equations
9
作者 Chien-Hong Cho 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期475-498,共24页
We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we pro... We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero. 展开更多
关键词 finite difference method nonlinear wave equation blow-up
下载PDF
Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs 被引量:1
10
作者 W. W. Mohammed M. A. Sohaly +1 位作者 A. H. El-Bassiouny K. A. Elnagar 《American Journal of Computational Mathematics》 2014年第4期280-288,共9页
Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and ma... Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and mathematical sciences. In this paper we use three finite difference schemes in order to approximate the solution of stochastic parabolic partial differential equations. The conditions of the mean square convergence of the numerical solution are studied. Some case studies are discussed. 展开更多
关键词 STOCHASTIC Partial differential equationS Mean SQUARE SENSE Second Order Random Variable finite difference scheme
下载PDF
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
11
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
下载PDF
Alternating Group Explicit Iterative Methods for One-Dimensional Advection-Diffusion Equation
12
作者 Ning Chen Haiming Gu 《American Journal of Computational Mathematics》 2015年第3期274-282,共9页
The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE)... The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable. 展开更多
关键词 ONE-DIMENSIONAL advection-diffusion equations ALTERNATING Group EXPLICIT ITERATIVE Methods Stability Convergence finite difference Method
下载PDF
Finite difference scheme based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations 被引量:20
13
作者 Zhen-dong LUO Rui-wen WANG Jiang ZHU 《Science China Mathematics》 SCIE 2007年第8期1186-1196,共11页
The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from t... The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method. 展开更多
关键词 proper orthogonal decomposition singular value decomposition finite difference scheme the nonstationary Navier-Stokes equations 65N30 35Q10
原文传递
A PERTURBATIONAL FOURTH-ORDER UPWIND FINITE DIFFERENCE SCHEME FOR THE CONVECTION-DIFFUSION EQUATION 被引量:7
14
作者 Chen Guo-qian Yang Zhi-feng Department of Mechanics,Peking University,Beijing 100871,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1993年第1期82-97,共16页
In this study,a compact fourth-order upwind finite difference scheme for the con- vection-diffusion equation is developed,by the scheme perturbation technique and the compact second-order upwind scheme proposed by the... In this study,a compact fourth-order upwind finite difference scheme for the con- vection-diffusion equation is developed,by the scheme perturbation technique and the compact second-order upwind scheme proposed by the authors.The basic fourth-order scheme,which like the classical upwind scheme is free of cell Reynolds-number limitation in terms of spurious oscil- lation and involves only immediate neighbouring nodal points,is presented for the one-dimen- sional equation,and subsequently generalized to multi-dimensional cases.Numerical examples including one-to three-dimensional model equations,with available analytical solutions,of fluid flow and a problem,with benchmark solutions,of natural convective heat transfer are given to illustrate the excellent behavior in such aspects as accuracy,resolution to‘shock wave’-and ‘boundary layer’-effects in convection dominant cases,of the present scheme.Besides,the fourth-order accuracy is specially verified using double precision arithmetic. 展开更多
关键词 convection-diffusion equation finite difference scheme
原文传递
Two finite difference schemes for the phase field crystal equation 被引量:5
15
作者 CAO HaiYan SUN ZhiZhong 《Science China Mathematics》 SCIE CSCD 2015年第11期2435-2454,共20页
The phase field crystal(PFC) model is a nonlinear evolutionary equation that is of sixth order in space.In the first part of this work,we derive a three level linearized difference scheme,which is then proved to be en... The phase field crystal(PFC) model is a nonlinear evolutionary equation that is of sixth order in space.In the first part of this work,we derive a three level linearized difference scheme,which is then proved to be energy stable,uniquely solvable and second order convergent in L_2 norm by the energy method combining with the inductive method.In the second part of the work,we analyze the unique solvability and convergence of a two level nonlinear difference scheme,which was developed by Zhang et al.in 2013.Some numerical results with comparisons are provided. 展开更多
关键词 phase field crystal model nonlinear evolutionary equation finite difference scheme SOLVABILITY CONVERGENCE
原文传递
A FINITE DIFFERENCE SCHEME FOR THE GENERALIZED NONLINEAR SCHRDINGER EQUATION WITH VARIABLE COEFFICIENTS 被引量:3
16
作者 Wei-zhong Dai Raja Nassar (Mathematics and Statistics, College of Engineering and Science, Louisiana Tech University, Ruston, LA 71272, USA) 《Journal of Computational Mathematics》 SCIE CSCD 2000年第2期123-132,共10页
A finite difference scheme for the generalized nonlinear Schr dinger equation with variable coefficients is developed. The scheme is shown to satisfy two conservation laws. Numerical results show that the scheme is a... A finite difference scheme for the generalized nonlinear Schr dinger equation with variable coefficients is developed. The scheme is shown to satisfy two conservation laws. Numerical results show that the scheme is accurate and efficient. 展开更多
关键词 finite difference scheme Schrdinger equation Discrete energy method.
原文传递
A Consistent Fourth-Order Compact Finite Difference Scheme for Solving Vorticity-Stream Function Form of Incompressible Navier-Stokes Equations 被引量:1
17
作者 Tao Wang Tiegang Liu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2019年第1期312-330,共19页
The inconsistent accuracy and truncation error in the treatment of boundary usually leads to performance defects,such as decreased accuracy and even numerical instability,of the entire computational method,especially ... The inconsistent accuracy and truncation error in the treatment of boundary usually leads to performance defects,such as decreased accuracy and even numerical instability,of the entire computational method,especially for higher order methods.In this work,we construct a consistent fourth-order compact finite difference scheme for solving two-dimensional incompressible Navier-Stokes(N-S)equations.In the pro-posed method,the main truncation error term of the boundary scheme is kept the same as that of the interior compact finite difference scheme.With such a feature,the nu-merical stability and accuracy of the entire computation can be maintained the same as the interior compact finite difference scheme.Numerical examples show the effec-tiveness and accuracy of the present consistent compact high order scheme in L^(∞).Its application to two dimensional lid-driven cavity flow problem further exhibits that un-der the same condition,the computed solution with the present scheme is much close to the benchmark in comparison to those from the 4^(th)order explicit scheme.The compact finite difference method equipped with the present consistent boundary technique im-proves much the stability of the whole computation and shows its potential application to incompressible flow of high Reynolds number. 展开更多
关键词 Navier-Stokes equations compact finite difference scheme consistent boundary scheme Lid-driven cavity
原文传递
Error Estimate of a New Conservative Finite Difference Scheme for the Klein-Gordon-Dirac System
18
作者 Shasha Bian Yue Cheng +1 位作者 Boling Guo Tingchun Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第1期140-164,共25页
In this paper,we derive and analyze a conservative Crank-Nicolson-type finite difference scheme for the Klein-Gordon-Dirac(KGD)system.Differing from the derivation of the existing numerical methods given in literature... In this paper,we derive and analyze a conservative Crank-Nicolson-type finite difference scheme for the Klein-Gordon-Dirac(KGD)system.Differing from the derivation of the existing numerical methods given in literature where the numerical schemes are proposed by directly discretizing the KGD system,we translate the KGD equations into an equivalent system by introducing an auxiliary function,then derive a nonlinear Crank-Nicolson-type finite difference scheme for solving the equivalent system.The scheme perfectly inherits the mass and energy conservative properties possessed by the KGD,while the energy preserved by the existing conservative numerical schemes expressed by two-level’s solution at each time step.By using energy method together with the‘cut-off’function technique,we establish the optimal error estimate of the numerical solution,and the convergence rate is O(τ^(2)+h^(2))in l∞-norm with time stepτand mesh size h.Numerical experiments are carried out to support our theoretical conclusions. 展开更多
关键词 Klein-Gordon-Dirac equation nonlinear finite difference scheme conservation error analysis
原文传递
A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation
19
作者 Ting-chun WANG Li-mei ZHAO Bo-ling GUO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第4期863-878,共16页
In this paper, we propose a class of stable finite difference schemes for the initial-boundary value problem of the Cahn-Hilliard equation. These schemes are proved to inherit the total mass conservation and energy di... In this paper, we propose a class of stable finite difference schemes for the initial-boundary value problem of the Cahn-Hilliard equation. These schemes are proved to inherit the total mass conservation and energy dissipation in the discrete level. The dissipation of the total energy implies boundness of the numerical solutions in the discrete H1 norm. This in turn implies boundedness of the numerical solutions in the maximum norm and hence the stability of the difference schemes. Unique existence of the numerical solutions is proved by the fixed-point theorem. Convergence rate of the class of finite difference schemes is proved to be O(h2 + r2) with time step T and mesh size h. An efficient iterative algorithm for solving these nonlinear schemes is proposed and discussed in detail. 展开更多
关键词 Cahn-Hilliard equation finite difference scheme conservation of mass dissipation of energy CONVERGENCE iterative algorithm
原文传递
THE COMPACT SECOND-ORDER UPWIND FINITE DIFFERENCE SCHEMES FOR THE CONVECTION-DIFFUSION EQUATIONS
20
作者 Chen Guo-qian Yang Zhi-feng Department of Mechanics,Peking University,Beijing 100871,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1992年第4期32-42,共11页
The compact second-order upwind finite difference schemes free of ceil Reynolds number limitation are developed in this paper for the one-to three-dimensional steady convection- diffusion equations,using a perturbatio... The compact second-order upwind finite difference schemes free of ceil Reynolds number limitation are developed in this paper for the one-to three-dimensional steady convection- diffusion equations,using a perturbational technique applied to the classical first-order upwind schemes.The present second-order schemes take essentially the same form as those of the first- order schemes,but involve a simple modification to the diffusive coefficients.Numerical exam- ples including one-to three-dimensional model equations of fluid flow and a problem of natural convection with boundary-layer effect are given to illustrate the excellent behavior of the present schemes. 展开更多
关键词 convection-diffusion equations finite difference scheme perturbational technique
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部