This paper addresses the challenge of large margin classification for spare filtering in the presence of an adversary who disguises the spam mails to avoid being detected. In practice, the adversary may strategically ...This paper addresses the challenge of large margin classification for spare filtering in the presence of an adversary who disguises the spam mails to avoid being detected. In practice, the adversary may strategically add good words indicative of a legitimate message or remove bad words indicative of spam. We assume that the adversary could afford to modify a spam message only to a certain extent, without damaging its utility for the spammer. Under this assumption, we present a large margin approach for classification of spare messages that may be disguised. The proposed classifier is formulated as a second-order cone programming optimization. We performed a group of experiments using the TREC 2006 Spam Corpus. Results showed that the performance of the standard support vector machine (SVM) degrades rapidly when more words are injected or removed by the adversary, while the proposed approach is more stable under the disguise attack.展开更多
基金supported by the National Natural Science Foundation of China (No. 61103212)the Natural Science Foundation of CQ CSTC, China (No. cstcjjA40005)
文摘This paper addresses the challenge of large margin classification for spare filtering in the presence of an adversary who disguises the spam mails to avoid being detected. In practice, the adversary may strategically add good words indicative of a legitimate message or remove bad words indicative of spam. We assume that the adversary could afford to modify a spam message only to a certain extent, without damaging its utility for the spammer. Under this assumption, we present a large margin approach for classification of spare messages that may be disguised. The proposed classifier is formulated as a second-order cone programming optimization. We performed a group of experiments using the TREC 2006 Spam Corpus. Results showed that the performance of the standard support vector machine (SVM) degrades rapidly when more words are injected or removed by the adversary, while the proposed approach is more stable under the disguise attack.