期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Aeration optimization through operation at low dissolved oxygen concentrations:Evaluation of oxygen mass transfer dynamics in different activated sludge systems 被引量:10
1
作者 Haitao Fan Lu Qi +3 位作者 Guoqiang Liu Yuankai Zhang Qiang Fan Hongchen Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期224-235,共12页
In wastewater treatment plants(WWTPs)using the activated sludge process,two methods are widely used to improve aeration efficiency — use of high-efficiency aeration devices and optimizing the aeration control strat... In wastewater treatment plants(WWTPs)using the activated sludge process,two methods are widely used to improve aeration efficiency — use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics(such as concentrations of mixed liquor suspended solids(MLSS)and microbial communities)and operating conditions(such as air flow rate and operational dissolved oxygen(DO)concentrations). Moreover,operational DO is closely linked to effluent quality. This study,which is in reference to WWTP discharge class A Chinese standard effluent criteria,determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3 mg/L,and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions,as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model(determined using different air flow rate(Q′air)and mixed liquor volatile suspended solids(MLVSS)values),theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however,operating at low DO and low MLVSS could significantly reduce energy consumption. Finally,a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed,which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. 展开更多
关键词 aeration optimization Low dissolved oxygen nitrification Mixed liquor suspended solids Oxygen mass transfer Oxygen uptake rate
原文传递
Optimal Aerations in the Inverse Fluidized Bed Biofilm Reactor When Used in Treatment of Industrial Wastewaters of Various Strength
2
作者 Wlodzimierz Sokól 《Advances in Chemical Engineering and Science》 2012年第3期384-391,共8页
The aim of this work was the determination of the optimal aerations, and more specifically the corresponding optimal air velocities uopt, at which the largest COD removals were achieved in treatment of industrial wast... The aim of this work was the determination of the optimal aerations, and more specifically the corresponding optimal air velocities uopt, at which the largest COD removals were achieved in treatment of industrial wastewaters of various strength conducted in the inverse fluidized bed biofilm reactor. The largest COD removals were achieved at the following air velocities uopt and retention times ts, and (Vb/VR) = 0.55: i) for CODo = 72,780 mg/l at uopt = 0.052 m/s and ts = 80 h;ii) for CODo = 62,070 mg/l at uopt = 0.042 m/s and ts = 65 h;iii) for CODo = 49,130 mg/l at uopt = 0.033 m/s and ts= 55 h;iv) for CODo = 41,170 mg/l at uopt = 0.028 m/s and ts = 45 h;v) for CODo = 35,460 mg/l at uopt = 0.025 m/s and ts = 27.5 h;and vi) for CODo = 26,470 mg/l at uopt= 0.014 m/s and ts = 22.5 h. In the treatment operation conducted in a reactor optimally controlled at the above values of uopt, ts and (Vb/VR), the following decreases in COD were obtained: i) from 72,780 to 5410 mg/l;ii) from 62,070 to 3730 mg/l;iii) from 49,130 to 2820 mg/l;iv) from 41,170 to 1820 mg/l;v) from 35,460 to 1600 mg/l;and vi) from 26,470 to 1180 mg/l, that is, approximately a 93%, 94%, 95%, 96%, 95% and 96% COD reduction was attained, respectively. 展开更多
关键词 Optimal aeration Aerobic Wastewater Treatment Biological Wastewater Treatment Inverse Biofilm Reactor Fluidized Bed Bioreactor Low-Density Biomass Support
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部