期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
EXPERIMENTAL AND NUMERICAL SIMULATION OF THREE-PHASE FLOW IN AN AERATION TANK 被引量:4
1
作者 ChengWen ZhouXiao-de +3 位作者 SongCe MinTao MuraiYuichi YamamotoFujio 《Journal of Hydrodynamics》 SCIE EI CSCD 2003年第4期118-123,共6页
Aeration plays an important role in the treatment of activated sludge due tothe interactions among bubbles, sewage and activated sludge in an aeration tank. The aerationperformance is directly concerned with the effic... Aeration plays an important role in the treatment of activated sludge due tothe interactions among bubbles, sewage and activated sludge in an aeration tank. The aerationperformance is directly concerned with the efficiency of sewage disposal. So the three-dimensionaltwo-fluid model was established with emphasis on the phase interaction terms in this paper. Thismodel, as an extension of the two-phase flow model, involved the motion laws of three-phases, andwas compared with experimental studies. The finite volume method was used in the numericalsimulation of gas-liquid two-phase flow and gas-liquid-solid three-phase flow. In order to discussthe influence of gas-phase, liquid-phase and solid-phase motions in an aeration tank on the sewagedisposal, three kinds of boundary and initial conditions were adopted. The simulated results of theflow structure show qualitatively good agreement with the experimental data. And the theoreticalbasis for designing the best aeration tank was discussed according to the simulated results. 展开更多
关键词 aeration tank three-phase flow numerical simulation
原文传递
EXPERIMENTAL STUDY ON GAS-LIQUID TWO-PHASE FLOWS IN AN AREATION TANK BY USING IMAGE TREATMENT METHOD 被引量:13
2
作者 CHENG Wen LIU Wen-hong +1 位作者 HU Bao-wei WAN Tian 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第5期650-655,共6页
Particle Image Velocimetry (PIV) technique was employed to study experimentally gas-liquid two-phase flow in an aeration tank. In terms of the PIV principles, an algorithm of PIV based on the Fast Fourier Transforma... Particle Image Velocimetry (PIV) technique was employed to study experimentally gas-liquid two-phase flow in an aeration tank. In terms of the PIV principles, an algorithm of PIV based on the Fast Fourier Transformation (FFT) was worked out. The PIV program was developed and verified, and then was used to measure three kinds of states in the testing device. The program was also used to calculate and analyze the related parameters. The experimental data indicate that the bubbles in testing device have the longest resident time and stronger turbulent intensity for the gas-liquid two-phase flow in a special case (Case 3), resulting in great increase of the oxygen transferring speed and efficiency, whereby providing the basis for the selection design of aeration tank. 展开更多
关键词 gas-liquid two-phase flow Particle Image Velocimetry (PIV) Fast Fourier Transformation (FFT) aeration tank
原文传递
The effect of bubble plume on oxygen transfer for moving bed biofilm reactor 被引量:2
3
作者 程文 刘鹄 +1 位作者 王蒙 王敏 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第4期664-667,共4页
The movement of the bubble plume plays an important role in the operation of a moving bed biofilm reactor (MBBR), and it directly affects the contact and the mixture of the gas-liquid-solid phases in the aeration ta... The movement of the bubble plume plays an important role in the operation of a moving bed biofilm reactor (MBBR), and it directly affects the contact and the mixture of the gas-liquid-solid phases in the aeration tank and also the oxygen transfer from the gas phase to the liquid phase. In this study, the velocity field is determined by a 4-frame PTV as well as the time-averaged and timedependent velocity distributions. The velocity distribution of the bubble plume is analyzed to evaluate the operating efficiency of the MBBR. The results show that the aeration rate is one of the main factors that sway the velocity distribution of the bubble plumes and affect the operating efficiency of the reactor. 展开更多
关键词 aeration tank bubble plume moving bed biofilm reactor (MBBR) image processing particle tracking velocimetry oxygen transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部