期刊文献+
共找到4,297篇文章
< 1 2 215 >
每页显示 20 50 100
基于DPBBO算法的智慧云仓UAV盘库作业优化
1
作者 张富强 温博强 惠记庄 《北京工业大学学报》 CAS CSCD 北大核心 2024年第8期921-929,共9页
针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与... 针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与信息交互运行机制,以危险避障和数据采集为约束函数,考虑了UAV在加速、减速、匀速、转角等飞行条件下的能耗差异,并以能耗最低和时间最短为目标函数构造UAV盘库作业数学模型;然后,设计了差分迁移-分段变异生物地理学优化(differential migration-piecewise mutation-biogeography-based optimization, DPBBO)算法对上述模型进行优化解算;最后,进行了仿真实验验证。结果表明:DPBBO算法对解决该盘库作业问题的效果较优,可以提升库存抽检任务的时效性和库存管理的准确性。 展开更多
关键词 智慧云仓 盘库作业 无人机 差分迁移-分段变异生物地理学优化算法 射频识别技术 工业物联网
下载PDF
基于多密度流聚类的UAV-NOMA用户分簇与功率分配算法
2
作者 杨青青 韩卓廷 +1 位作者 彭艺 吴桐 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期86-97,共12页
针对无人机(Unmanned Aerial Vehicle,UAV)辅助非正交多址(Non-Orthogonal Multiple Access,NOMA)下行通信系统,提出了最大化和速率的用户动态分簇与功率分配方案.考虑用户服务质量与UAV位置约束,建立了和速率最大化的优化问题.由于目... 针对无人机(Unmanned Aerial Vehicle,UAV)辅助非正交多址(Non-Orthogonal Multiple Access,NOMA)下行通信系统,提出了最大化和速率的用户动态分簇与功率分配方案.考虑用户服务质量与UAV位置约束,建立了和速率最大化的优化问题.由于目标函数的非凸性,将原问题解耦为三个子问题,分别优化UAV位置部署与用户连接、用户动态分簇、功率分配以提高系统性能.首先,基于K-means算法设计了UAV位置部署与用户连接方案,以减小路损为目的确定UAV最佳部署位置,同时选择其服务的最优用户群;其次,改进多密度流聚类(Multi-Density Stream Clustering, MDSC)算法,提出了单UAV下用户静态与动态分簇方案,静态分簇方案可自适应平衡簇数与簇用户数,并获得较大的簇内用户信道增益差异,动态分簇方案则针对用户移动属性,制定了即时更新策略;最后,使用分式规划(Fractional Programming,FP)二次变换的方法,引入辅助变量将原非凸问题变换为凸问题,交替优化辅助变量与功率分配因子,获得原非凸问题的次优解.仿真结果表明,与其他算法相比,本文分簇方案能获得更大的簇内信道差异与更小的簇内用户数标准差,同时用户系统性能也获得了显著提升. 展开更多
关键词 无人机 非正交多址 位置部署 动态分簇 功率分配
下载PDF
Received Power Based Unmanned Aerial Vehicles (UAVs) Jamming Detection and Nodes Classification Using Machine Learning 被引量:1
3
作者 Waleed Aldosari 《Computers, Materials & Continua》 SCIE EI 2023年第4期1253-1269,共17页
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ... This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks. 展开更多
关键词 Jamming attacks machine learning unmanned aerial vehicle(uav) WSNS
下载PDF
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:2
4
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 Unmanned aerial vehicle(uav) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
Cooperative UAV search strategy based on DMPC-AACO algorithm in restricted communication scenarios 被引量:1
5
作者 Shiyuan Chai Zhen Yang +3 位作者 Jichuan Huang Xiaoyang Li Yiyang Zhao Deyun Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期295-311,共17页
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr... Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios. 展开更多
关键词 Unmanned aerial vehicles(uav) Cooperative search Restricted communication Mission planning DMPC-AACO
下载PDF
Cooperative Anti-Jamming and Interference Mitigation for UAV Networks: A Local Altruistic Game Approach 被引量:1
6
作者 Yueyue Su Nan Qi +2 位作者 Zanqi Huang Rugui Yao Luliang Jia 《China Communications》 SCIE CSCD 2024年第2期183-196,共14页
To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a... To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms. 展开更多
关键词 channel selection cooperative antijamming and interference mitigation local altruistic game Stackelberg game unmanned aerial vehicle(uav)
下载PDF
Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features 被引量:1
7
作者 Asifa Mehmood Qureshi Naif Al Mudawi +2 位作者 Mohammed Alonazi Samia Allaoua Chelloug Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第3期3683-3701,共19页
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit... Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved. 展开更多
关键词 Unmanned aerial Vehicles(uav) aerial images DATASET object detection object tracking data elimination template matching blob detection SIFT VAID
下载PDF
IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks 被引量:1
8
作者 Ying Zhang Weiming Niu Leibing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期885-902,共18页
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ... In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(uav) intelligent reflecting surface(IRS) zero forcing(ZF)
下载PDF
RIS辅助的UAV与用户协同缓存策略
9
作者 朱景发 苏颖 张静 《上海师范大学学报(自然科学版中英文)》 2024年第3期322-329,共8页
研究了智能反射面(RIS)和缓存辅助的无人机(UAV)中继通信系统方案,通过在UAV与用户之间搭建RIS反射信号,改善信道环境;在UAV与用户设备上部署缓存设备,预先存储热点内容,减轻无线回程链路的压力;以最大化用户服务成功概率为优化目标,建... 研究了智能反射面(RIS)和缓存辅助的无人机(UAV)中继通信系统方案,通过在UAV与用户之间搭建RIS反射信号,改善信道环境;在UAV与用户设备上部署缓存设备,预先存储热点内容,减轻无线回程链路的压力;以最大化用户服务成功概率为优化目标,建立缓存容量受限约束下的UAV与用户协同缓存放置策略优化模型,针对该非线性连续非凸约束优化问题,提出基于鲸鱼优化算法(WOA)的求解方法.仿真实验结果表明,使用RIS可以有效降低UAV通信中断概率,基于WOA的UAV与用户协同缓存最优放置策略优于现有其他两种缓存策略,能有效提高缓存命中概率,从而提高用户服务成功概率. 展开更多
关键词 无人机(uav)通信 协同缓存 智能反射面(RIS) 鲸鱼优化算法(WOA) 服务成功概率
下载PDF
Multi-UAVs Collaborative Path Planning in the Cramped Environment
10
作者 Siyuan Feng Linzhi Zeng +2 位作者 Jining Liu Yi Yang Wenjie Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期529-538,共10页
Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe... Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner. 展开更多
关键词 Collision avoidance conflict resolution multi-unmanned aerial vehicles(uavs)system path planning
下载PDF
Unmanned aerial vehicles towards future Industrial Internet:Roles and opportunities
11
作者 Linpei Li Chunlei Sun +5 位作者 Jiahao Huo Yu Su Lei Sun Yao Huang Ning Wang Haijun Zhang 《Digital Communications and Networks》 SCIE CSCD 2024年第4期873-883,共11页
Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and rese... Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed. 展开更多
关键词 Unmanned aerial vehicles(uavs) uav-assisted communications Industrial Internet
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
12
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures Infrared thermal imaging Unmanned aerial vehicle(uav) COMSOL simulation
下载PDF
Estimation and verification of green tide biomass based on UAV remote sensing
13
作者 Xiaopeng JIANG Zhiqiang GAO Zhicheng WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1216-1226,共11页
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,... Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management. 展开更多
关键词 green tide biomass estimation quantitative technique Yellow Sea unmanned aerial vehicle(uav) remote sensing(RS)
下载PDF
UAV maneuvering decision-making algorithm based on deep reinforcement learning under the guidance of expert experience
14
作者 ZHAN Guang ZHANG Kun +1 位作者 LI Ke PIAO Haiyin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期644-665,共22页
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo... Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy. 展开更多
关键词 unmanned aerial vehicle(uav) maneuvering decision-making autonomous air-delivery deep reinforcement learning reward shaping expert experience
下载PDF
A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme
15
作者 Nianyin Zeng Xinyu Li +2 位作者 Peishu Wu Han Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期487-501,共15页
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati... Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation. 展开更多
关键词 Attention mechanism knowledge distillation(KD) object detection tensor decomposition(TD) unmanned aerial vehicles(uavs)
下载PDF
Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading
16
作者 Baofeng Ji Ying Wang +2 位作者 Weixing Wang Shahid Mumtaz Charalampos Tsimenidis 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1885-1905,共21页
The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of e... The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of employing intelligent reflective surfaces(IRS)andUAVs as relay nodes to efficiently offload user computing tasks to theMEC server system model.Specifically,the user node accesses the primary user spectrum,while adhering to the constraint of satisfying the primary user peak interference power.Furthermore,the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes,namely time switching(TS)and power splitting(PS).The selection of the optimal UAV is based on the maximization of the instantaneous signal-to-noise ratio.Subsequently,the analytical expression for the outage probability of the system in Rayleigh channels is derived and analyzed.The study investigates the impact of various system parameters,including the number of UAVs,peak interference power,TS,and PS factors,on the system’s outage performance through simulation.The proposed system is also compared to two conventional benchmark schemes:the optimal UAV link transmission and the IRS link transmission.The simulation results validate the theoretical derivation and demonstrate the superiority of the proposed scheme over the benchmark schemes. 展开更多
关键词 Unmanned aerial vehicle(uav) intelligent reflective surface(IRS) energy harvesting computational offloading outage probability
下载PDF
Real-time UAV path planning based on LSTM network
17
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(uav) long short-term memory(LSTM)
下载PDF
Sensing-Communication-Computing-Control Closed Loop for NOMA-UAV Systems
18
作者 Lei Chengleyang Feng Wei +4 位作者 Wang Jue Wang Yanmin Jin Shi Yin Liuguo Ge Ning 《China Communications》 SCIE CSCD 2024年第8期89-103,共15页
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic... In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design. 展开更多
关键词 closed loop linear quadratic regulator(LQR) non-orthogonal multiple access(NOMA) power allocation unmanned aerial vehicle(uav)
下载PDF
Energy Efficiency Maximization in Mobile Edge Computing Networks via IRS assisted UAV Communications
19
作者 Ying Zhang Weiming Niu +1 位作者 Supu Xiu Guangchen Mu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1865-1884,共20页
In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the ... In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the computing tasks of the terrestrial users and transmit the results back to them after computing.We jointly optimize the users’transmitted beamforming and uploading ratios,the phase shift matrix of IRS,and the UAV trajectory to improve the energy efficiency.The formulated optimization problem is highly non-convex and difficult to be solved directly.Therefore,we decompose the original problem into three sub-problems.We first propose the successive convex approximation(SCA)based method to design the beamforming of the users and the phase shift matrix of IRS,and apply the Lagrange dual method to obtain a closed-form expression of the uploading ratios.For the trajectory optimization,we propose a block coordinate descent(BCD)based method to obtain a local optimal solution.Finally,we propose the alternating optimization(AO)based overall algorithmand analyzed its complexity to be equivalent or lower than existing algorithms.Simulation results show the superiority of the proposedmethod compared with existing schemes in energy efficiency. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(uav) intelligent reflecting surface(IRS) energy efficiency
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
20
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 Unmanned aerial vehicle(uav) Uniform linear array(ULA) Direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
上一页 1 2 215 下一页 到第
使用帮助 返回顶部