The guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation is studied.In order to improve the tracking performance of UAV aerial refueling docking,aguidance algo...The guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation is studied.In order to improve the tracking performance of UAV aerial refueling docking,aguidance algorithm is developed to satisfy the tracking requirement of position and velocity,and it generates the UAV flight control loop commands.In flight control loop,based on the 6-DOF nonlinear model,the angular rate loop and the attitude loop are separated based on time-scale principle and the control law is designed using dynamic inversion.The throttle control is also derived from dynamic inversion method.Moreover,an L1 adaptive augmentation is developed to compensate for the undesirable effects of modeling uncertainty and disturbance.Nonlinear digital simulations are carried out.The results show that the guidance and control system has good tracking performance and robustness in achieving accurate aerial refueling docking.展开更多
基金supported by the National Natural Science Foundation of China(No.61273050)the Aeronautical Science Foundation of China(No.20121352026)
文摘The guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation is studied.In order to improve the tracking performance of UAV aerial refueling docking,aguidance algorithm is developed to satisfy the tracking requirement of position and velocity,and it generates the UAV flight control loop commands.In flight control loop,based on the 6-DOF nonlinear model,the angular rate loop and the attitude loop are separated based on time-scale principle and the control law is designed using dynamic inversion.The throttle control is also derived from dynamic inversion method.Moreover,an L1 adaptive augmentation is developed to compensate for the undesirable effects of modeling uncertainty and disturbance.Nonlinear digital simulations are carried out.The results show that the guidance and control system has good tracking performance and robustness in achieving accurate aerial refueling docking.