As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary e...As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.展开更多
Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliabilit...Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution.展开更多
The present article covers briefly state of the art software interoperability technical solutions and the development of the first module of a new single platform D & A (design & analysis) tool for simulation and ...The present article covers briefly state of the art software interoperability technical solutions and the development of the first module of a new single platform D & A (design & analysis) tool for simulation and prediction of stress and burst behavior of turbine rotating disc a preliminary design stage. This platform singularity requires integration of multiple CAD (computer assisted design) & FEA (finite element analysis) tools processing in batch mode and driven from a SPIE (single platform integration environment). This first module is also to demonstrate, for an axial turbine disc hub axi-symmetric component, feasibility and usefulness of such a platform at preliminary design stage. Expected benefits of the D & A single platform are to improve output accuracy, reduce cycle time, improve process quality and improve resource productivity.展开更多
In order to apply plasma assisted combustion(PAC) into a reverse-flow aero-engine and verify the improvement of combustion performance, a feasible approach was proposed in this work. In this approach, based on the str...In order to apply plasma assisted combustion(PAC) into a reverse-flow aero-engine and verify the improvement of combustion performance, a feasible approach was proposed in this work. In this approach, based on the structure characteristics of the reverse-flow combustor, a parallel plate double dielectric barrier discharge(DBD) PAC actuator was designed to generate plasma. It was installed at the front of combustor. When the actuator is driven, the original air flow is not disturbed for the device’s structure and installation. Using aviation kerosene as fuel, the effects of plasma on ignition boundary and outlet temperature of the combustor were experimentally investigated at atmosphere pressures. Through the dual high voltage differential power supply, the large gap, large area and uniform plasma discharge was achieved. The results of PAC actuator discharge indicate that inlet air temperature has a small increase of 4–9 K. After PAC is applied, the combustion performances of reverse-flow combustor in an aero-engine are remarkably improved. Experimental results indicate that ignition boundary is widened by 3.7%–12.5% because of the impact of plasma. Outlet highest temperature of combustor is raised by 19–75 K;outlet temperature distribution coefficient is reduced by 11.1%–26.6%. This research provides an effective and practicable way to implement the application of PAC in aero-engine combustor and has some engineering application significance.展开更多
Lean blow-out (LBO) is critical to operational performance of combustion systems in propulsion and power generation. Current predictive tools for LBO limits are based on decadesold empirical correlations that have l...Lean blow-out (LBO) is critical to operational performance of combustion systems in propulsion and power generation. Current predictive tools for LBO limits are based on decadesold empirical correlations that have limited applicability for modern combustor designs. According to the Lefebvre's model for LBO and classical perfect stirred reactor (PSR) concept, a load parameter (LP) is proposed for LBO analysis of aero-engine combustors in this paper. The parameters contained in load parameter are all estimated from the non-reacting flow field of a combustor that is obtained by numerical simulation. Additionally, based on the load parameter, a method of fuel iterative approximation (FIA) is proposed to predict the LBO limit of the combustor. Compared with experimental data for 19 combustors, it is found that load parameter can represent the actual combustion load of the combustor near LBO and have good relativity with LBO fuel/air ratio (FAR). The LBO FAR obtained by FIA shows good agreement with experimental data, the maximum prediction uncertainty of FIA is about ±17.5%. Because only the non-reacting flow is simulated, the time cost of the LBO limit prediction using FIA is relatively low (about 6 h for one combustor with computer equipment of CPU 2.66 GHz · 4 and 4 GB memory), showing that FIA is reliable and efficient to be used for practical applications.展开更多
Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The pa...Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.展开更多
In the design process of advanced aero-engines,it is necessary to carry out an effective analysis method between structural features and mechanical characteristics for a better structural optimization.Based on the str...In the design process of advanced aero-engines,it is necessary to carry out an effective analysis method between structural features and mechanical characteristics for a better structural optimization.Based on the structural composition and functions of aero-engines,the concept and contents of structural efficiency can reflect the relation between structural features and mechanical characteristics.In order to achieve the integrated design of structural and mechanical characteristics,one quantitative analysis method called Structural Efficiency Assessment Method(SEAM)was put forward.The structural efficiency coefficient was obtained by synthesizing the parameters to quantitatively evaluate the aero-engine structure design level.Parameterization method to evaluate structural design quality was realized.After analyzing the structural features of an actual dual-rotor system in typical high bypass ratio turbofan engines,the mechanical characteristics and structural efficiency coefficient were calculated.Structural efficiency coefficient of high-pressure rotor(0.43)is higher than that of low-pressure rotor(0.29),which directly shows the performance of the former is better,there is room for improvement in structural design of the low-pressure rotor.Thus the direction of structural optimization was pointed out.The applications of SEAM shows that the method is operational and effective in the evaluation and improvement of structural design.展开更多
The effects of pressure oscillation on aerodynamic characteristics in an aero-engine combustor are investigated. A combustor test rig is designed to simulate the pressure drop characteristics of a practical annular co...The effects of pressure oscillation on aerodynamic characteristics in an aero-engine combustor are investigated. A combustor test rig is designed to simulate the pressure drop characteristics of a practical annular combustor. The pressure drop characteristics are firstly measured under atmosphere condition with non-reacting flow(or cold flow), and the air mass flow proportion of each component(dome/liner) are obtained;these properties are base lines for comparison with combustion state. The combustion tests are then carried out under conditions of inlet temperature 340–450 K, fuel air ratio 0.010–0.028. The stability map and the oscillation frequencies are obtained in the tests, the results show that pressure oscillation amplitude increases with the increase of fuel air ratio. Phase trajectory reconstruction is applied to classify the pressure oscillation motion;there are three motions captured in the tests including: ‘‘disk", ‘‘ring" and ‘‘cluster". The pressure drops across the dome under strong pressure oscillation are distinctly divergent from the cold flow, and the changes of pressure drops are mainly affected by pressure oscillation amplitude, but is less influenced by pressure oscillation motion nor oscillation frequencies. Based on the mass flow conservation, the reduction of effective flow area of combustor under strong pressure oscillation is demonstrated. Liner wall temperatures are analyzed through Multiple Linear Regression(MLR)method to estimate the reduction of the air mass flow proportion of the liner cooling under strong pressure oscillation. Finally, the air mass flow proportions of each component under strong pressure oscillation are estimated, the results show that the pressure oscillation motion also has influence on air mass flow proportion.展开更多
文摘As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.
文摘Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution.
文摘The present article covers briefly state of the art software interoperability technical solutions and the development of the first module of a new single platform D & A (design & analysis) tool for simulation and prediction of stress and burst behavior of turbine rotating disc a preliminary design stage. This platform singularity requires integration of multiple CAD (computer assisted design) & FEA (finite element analysis) tools processing in batch mode and driven from a SPIE (single platform integration environment). This first module is also to demonstrate, for an axial turbine disc hub axi-symmetric component, feasibility and usefulness of such a platform at preliminary design stage. Expected benefits of the D & A single platform are to improve output accuracy, reduce cycle time, improve process quality and improve resource productivity.
基金supported by the National Natural Science Foundation of China (Funding Nos. 51436008, 91741112 and 51806245)
文摘In order to apply plasma assisted combustion(PAC) into a reverse-flow aero-engine and verify the improvement of combustion performance, a feasible approach was proposed in this work. In this approach, based on the structure characteristics of the reverse-flow combustor, a parallel plate double dielectric barrier discharge(DBD) PAC actuator was designed to generate plasma. It was installed at the front of combustor. When the actuator is driven, the original air flow is not disturbed for the device’s structure and installation. Using aviation kerosene as fuel, the effects of plasma on ignition boundary and outlet temperature of the combustor were experimentally investigated at atmosphere pressures. Through the dual high voltage differential power supply, the large gap, large area and uniform plasma discharge was achieved. The results of PAC actuator discharge indicate that inlet air temperature has a small increase of 4–9 K. After PAC is applied, the combustion performances of reverse-flow combustor in an aero-engine are remarkably improved. Experimental results indicate that ignition boundary is widened by 3.7%–12.5% because of the impact of plasma. Outlet highest temperature of combustor is raised by 19–75 K;outlet temperature distribution coefficient is reduced by 11.1%–26.6%. This research provides an effective and practicable way to implement the application of PAC in aero-engine combustor and has some engineering application significance.
文摘Lean blow-out (LBO) is critical to operational performance of combustion systems in propulsion and power generation. Current predictive tools for LBO limits are based on decadesold empirical correlations that have limited applicability for modern combustor designs. According to the Lefebvre's model for LBO and classical perfect stirred reactor (PSR) concept, a load parameter (LP) is proposed for LBO analysis of aero-engine combustors in this paper. The parameters contained in load parameter are all estimated from the non-reacting flow field of a combustor that is obtained by numerical simulation. Additionally, based on the load parameter, a method of fuel iterative approximation (FIA) is proposed to predict the LBO limit of the combustor. Compared with experimental data for 19 combustors, it is found that load parameter can represent the actual combustion load of the combustor near LBO and have good relativity with LBO fuel/air ratio (FAR). The LBO FAR obtained by FIA shows good agreement with experimental data, the maximum prediction uncertainty of FIA is about ±17.5%. Because only the non-reacting flow is simulated, the time cost of the LBO limit prediction using FIA is relatively low (about 6 h for one combustor with computer equipment of CPU 2.66 GHz · 4 and 4 GB memory), showing that FIA is reliable and efficient to be used for practical applications.
基金the financial support from the National Natural Science Foundation of China(Nos.51575022 and 51475021)
文摘Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.
基金AECC Commercial Aircraft Engine Co.,LTD for providing the financial support。
文摘In the design process of advanced aero-engines,it is necessary to carry out an effective analysis method between structural features and mechanical characteristics for a better structural optimization.Based on the structural composition and functions of aero-engines,the concept and contents of structural efficiency can reflect the relation between structural features and mechanical characteristics.In order to achieve the integrated design of structural and mechanical characteristics,one quantitative analysis method called Structural Efficiency Assessment Method(SEAM)was put forward.The structural efficiency coefficient was obtained by synthesizing the parameters to quantitatively evaluate the aero-engine structure design level.Parameterization method to evaluate structural design quality was realized.After analyzing the structural features of an actual dual-rotor system in typical high bypass ratio turbofan engines,the mechanical characteristics and structural efficiency coefficient were calculated.Structural efficiency coefficient of high-pressure rotor(0.43)is higher than that of low-pressure rotor(0.29),which directly shows the performance of the former is better,there is room for improvement in structural design of the low-pressure rotor.Thus the direction of structural optimization was pointed out.The applications of SEAM shows that the method is operational and effective in the evaluation and improvement of structural design.
文摘The effects of pressure oscillation on aerodynamic characteristics in an aero-engine combustor are investigated. A combustor test rig is designed to simulate the pressure drop characteristics of a practical annular combustor. The pressure drop characteristics are firstly measured under atmosphere condition with non-reacting flow(or cold flow), and the air mass flow proportion of each component(dome/liner) are obtained;these properties are base lines for comparison with combustion state. The combustion tests are then carried out under conditions of inlet temperature 340–450 K, fuel air ratio 0.010–0.028. The stability map and the oscillation frequencies are obtained in the tests, the results show that pressure oscillation amplitude increases with the increase of fuel air ratio. Phase trajectory reconstruction is applied to classify the pressure oscillation motion;there are three motions captured in the tests including: ‘‘disk", ‘‘ring" and ‘‘cluster". The pressure drops across the dome under strong pressure oscillation are distinctly divergent from the cold flow, and the changes of pressure drops are mainly affected by pressure oscillation amplitude, but is less influenced by pressure oscillation motion nor oscillation frequencies. Based on the mass flow conservation, the reduction of effective flow area of combustor under strong pressure oscillation is demonstrated. Liner wall temperatures are analyzed through Multiple Linear Regression(MLR)method to estimate the reduction of the air mass flow proportion of the liner cooling under strong pressure oscillation. Finally, the air mass flow proportions of each component under strong pressure oscillation are estimated, the results show that the pressure oscillation motion also has influence on air mass flow proportion.