期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
VIBRATION CHARACTERISTIC INVESTIGATION OF COUNTER-ROTATING DUAL-ROTOR IN AERO-ENGINE 被引量:4
1
作者 冯国全 周柏卓 罗贵火 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期33-39,共7页
Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s... Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio. 展开更多
关键词 aero-engine COUNTER-ROTATING rotor dynamics DUAL-rotor vibration characteristics
下载PDF
Bifurcation analysis of aero-engine's rotor system under constant maneuver load 被引量:2
2
作者 Lei HOU Yushu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第11期1417-1426,共10页
When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Tak... When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load. 展开更多
关键词 constant maneuver load aero-engine Jeffcott rotor system two-variablesingularity BIFURCATION
下载PDF
A tip clearance prediction model for multistage rotors and stators in aero-engines 被引量:8
3
作者 Huibin SUN Jing WANG +3 位作者 Kai CHEN Huateng XIA Xin FENG Zhiyong CHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期343-357,共15页
Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation me... Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation mechanism, cause overproof or non-uniform tip clearances. However, it is generally accepted that tip clearances are difficult to predict, even under assembly state. In this paper, a tip clearance prediction model is proposed based on measured error data. Some 3 D error propagation sub-models, regarding rotors, supports and casings, are built and combined. The complex error coupling relationship is uncovered using mathematical methods. Rotor and stator tip clearances are predicted and analyzed in different phase angles. The maximum, minimum and average tip clearances can be calculated. The proposed model is implemented by a computer program,and a case study illustrates its performance and verifies its feasibility. The results can be referred by engineers in assembly quality judgement and decision-making. 展开更多
关键词 Tip clearance Prediction Error propagation model rotor and stator aero-engine Assembly
原文传递
Nonlinear dynamic behavior of a flexible asymmetric aero-engine rotor system in maneuvering flight 被引量:9
4
作者 Tian GAO Shuqian CAO Yongtao SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2633-2648,共16页
Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dam... Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration. 展开更多
关键词 aero-engine rotor system Ball bearings Maneuvering flight Nonlinear dynamics Squeeze film dampers
原文传递
Dynamic behavior of aero-engine rotor with fusing design suffering blade off 被引量:12
5
作者 Cun WANG Dayi ZHANG +2 位作者 Yanhong MA Zhichao LIANG Jie HONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期918-931,共14页
Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The pa... Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine. 展开更多
关键词 aero-engine Blade off Finite element analysis Fusing design rotor dynamics Sudden unbalance
原文传递
Nonlinear interval analysis of rotor response with joints under uncertainties 被引量:10
6
作者 Yanhong MA Yongfeng WANG +1 位作者 Cun WANG Jie HONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第1期205-218,共14页
The dynamic influence of joints in aero-engine rotor systems is investigated in this paper.Firstly,the tangential stiffness and loss factor are obtained from an isolated lap joint setup with dynamic excitation experim... The dynamic influence of joints in aero-engine rotor systems is investigated in this paper.Firstly,the tangential stiffness and loss factor are obtained from an isolated lap joint setup with dynamic excitation experiments.Also,the influence of the normal contact pressure and the excitation level are examined,which revel the uncertainty in joints.Then,the updated Thin Layer Elements(TLEs)method with fitted parameters based on the experiments is established to simulate the dynamic properties of joints on the interface.The response of the rotor subjected to unbalance excitation is calculated,and the results illustrate the effectiveness of the proposed method.Meanwhile,using the Chebyshev inclusion function and a direct iteration algorithm,a nonlinear interval analysis method is established to consider the uncertainty of parameters in joints.The accuracy is proved by comparison with results obtained using the Monte-Carlo method.Combined with the updated TLEs,the nonlinear Chebyshev method is successfully applied on a finite model of a rotor.The study shows that substantial attention should be paid to the dynamical design for the joint in rotor systems,the dynamic properties of joints under complex loading and the corresponding interval analysis method need to be intensively studied. 展开更多
关键词 aero-engine Bolted JOINTS NONLINEAR interval analysis METHOD rotor dynamics UNCERTAINTIES Updated Thin Layer Elements(TLE)method
原文传递
Interval analysis of rotor dynamic response based on Chebyshev polynomials 被引量:6
7
作者 Yanhong MA Yongfeng WANG +1 位作者 Cun WANG Jie HONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第9期2342-2356,共15页
Uncertainty is extensively involved in the rotor systems of rotating machinery, which may cause an unstable vibrational response. To take the uncertainty into consideration for the uncertain rotor-bearing system, an i... Uncertainty is extensively involved in the rotor systems of rotating machinery, which may cause an unstable vibrational response. To take the uncertainty into consideration for the uncertain rotor-bearing system, an improved unified interval analysis method based on the Chebyshev expansion is established in this paper. Firstly, the Chebyshev Interval Method(CIM) to calculate not only the critical speeds but also the dynamic response of rotor with uncertain parameters is introduced. Then, the numerical investigation is carried out based on the developed double disk rotor model and computation procedure, and the results demonstrate the validity. But when the uncertainty is sufficiently large to influence critical speeds, the upper and lower bounds are far from the actual bounds. In order to overcome the defects, a Bound Correction Interval analysis Method(BCIM) is proposed based on the Chebyshev expansion and the modal superposition. In use of the improved method, the bounds of the interval responses, especially the upper bound,are corrected, and the comparison with other methods demonstrates that the higher accuracy and a wider application range. 展开更多
关键词 aero-engine Chebyshev expansion Interval analysis methods rotor dynamics UNCERTAINTY
原文传递
Experimental Study of the Vibration Phenomenon of Compressor Rotor Blade Induced by Inlet Probe Support 被引量:4
8
作者 YANG Yong XIANG Honghui +3 位作者 GAO Jie XU Kaijun YANG Rongfei GE Ning 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第5期1674-1683,共10页
An experimental investigation was conducted in order to understand the installation effects of inlet measurement probes on the vibration characteristics of the rotor blades in two axial compressors.The vibration signa... An experimental investigation was conducted in order to understand the installation effects of inlet measurement probes on the vibration characteristics of the rotor blades in two axial compressors.The vibration signal of the rotor blades was analyzed for different layouts of the inlet measurement probes.For the three-stage axial compressor,the first-order resonance occurs on the first stage of the rotor blades at an engine order excitation condition,which is induced by the cylindrical probe support with a diameter of 10 mm.When the size of the probe support is decreased,the vibration level reduces evidently.In contrast,for the six-stage axial compressor,the first-order resonance occurs on the first stage of the rotor blades at an excitation source of 6th order,which is triggered by the inlet measurement probes and the upstream struts.When the number of the inlet measurement probes is changed,the resonance of the rotor blades vanishes. 展开更多
关键词 aero-engine axial compressor probe support rotor blade vibration strain resonance
原文传递
Review of the development of the probabilistic damage tolerance assessment of life-limited parts in compliance with the airworthiness regulations 被引量:2
9
作者 Shuiting Ding Huimin Zhou +2 位作者 Junbo Liu Xingyu Zhang Guo Li 《Propulsion and Power Research》 SCIE 2023年第3期297-321,共25页
Probabilistic damage tolerance is a critical method to understand and communicate risk and safety.This paper reviews recent research on the probabilistic damage tolerance design for life-limited parts.The vision of th... Probabilistic damage tolerance is a critical method to understand and communicate risk and safety.This paper reviews recent research on the probabilistic damage tolerance design for life-limited parts.The vision of the probabilistic damage tolerance assessment is provided.Five core parts of the probabilistic damage tolerance method are introduced separately,including the anomaly distribution,stress processing and zone definition,fatigue and fracture calculation method,probability of failure(POF)calculation method,and the combination with residual stress induced by the manufacturing process.The above currently-available risk assessment methods provide practical tools for failure risk predictions and are applied by the airworthiness regulations.However,new problems are exposed with the development of the aeroengines.The time-consuming anomaly distribution derivation process restricts the development of the anomaly distribution,especially for the developing aviation industries with little empirical data.Additionally,the strong transient characteristic is prominent because of the significant temperature differences during the take-off and climbing periods.The complex loads then challenge the fatigue and fracture calculation model.Besides,high computational efficiency is required because various variables are considered to calculate the POF.Therefore,new technologies for the probabilistic damage tolerance assessment are provided,including the efficient anomaly distribution acquisition method based on small samples,the zone definition method considering transient process,and stress intensity factor(SIF)solutions under arbitrary stress distributions combined with the machine learning method.Then,an efficient numerical integration method for calculating failure risk based on the probability density evolution theory is proposed.Meanwhile,the influence of the manufacturing process on residual stress and the failure risk of the rotors is explored.The development of the probabilistic damage tolerance method can meet the requirement of the published airworthiness regulation Federal Aviation Regulation(FAR)33.70 and guide the modification or amendment of new regulations to ensure the safety of the high-energy rotors. 展开更多
关键词 Probabilistic damage tolerance assessment Life-limited parts aero-engine rotors Hard alpha(HA)anomaly distribution Hole feature Transient process Crack propagation Stress intensity factor(SIF)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部