Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- eri...Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- ering the pressure of sealing air is an important operating condition that affects the oil droplet and oil film mo- tions, the effect of sealing air pressure on airflow in bearing chamber is investigated in this paper firstly ; and then based on the air velocity and air/wall shear force, the oil droplet moving in core air, deposition of oil droplet im- pact on wall as well as velocity and thickness of oil film are analyzed secondly; the effect of sealing air pressure on oil droplet velocity and trajectory, deposition mass and momentum, as well as oil film velocity and thickness is discussed. The work presented in this paper is conducive to expose the oil/air two phase lubrication mechanism and has certain reference value to guide design of secondary air/oil system.展开更多
Experimental investigation has been done to evaluate the leakage performance of labyrinth seal for oil sealing on high-speed sealing test rig at different working and geometric parameters.Typical values of pressure ra...Experimental investigation has been done to evaluate the leakage performance of labyrinth seal for oil sealing on high-speed sealing test rig at different working and geometric parameters.Typical values of pressure ratio ranging from 1.0 to 2.0 were used and the rotating speed varied from 0 to 30,000 tpm.Dimensionless Taylor number was invited to response the effect of rotation.Oil was injected at the rate from 1.2 L/min to 2.8 L/min to check the sealing capacity.Leakage was measured at different seal configurations including sealing clearance,tooth tip thickness,pitch,teeth number,front inclined angle and oil-throwing angle.Different from gas sealing,the application of oil-throwing tooth in oil sealing attracted much interest as an obvious alternative to the conventional labyrinth seal.A blocking ring was captured during testing,which establishes understanding of underlying flow mechanisms in the clearance and plays an important role in oil sealing.There is a critical Taylor number at which the leakage coefficient drops drastically.After the critical Taylor number,a parabola rule appears.An optimal composition of tooth tip thickness,teeth number,oil-throwing angle and front inclined angle exists where the leakage performance behaves better.展开更多
基金supported by the Natural Science Foundation of China under Grant No.51275411
文摘Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- ering the pressure of sealing air is an important operating condition that affects the oil droplet and oil film mo- tions, the effect of sealing air pressure on airflow in bearing chamber is investigated in this paper firstly ; and then based on the air velocity and air/wall shear force, the oil droplet moving in core air, deposition of oil droplet im- pact on wall as well as velocity and thickness of oil film are analyzed secondly; the effect of sealing air pressure on oil droplet velocity and trajectory, deposition mass and momentum, as well as oil film velocity and thickness is discussed. The work presented in this paper is conducive to expose the oil/air two phase lubrication mechanism and has certain reference value to guide design of secondary air/oil system.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51576193 and No.51706223).
文摘Experimental investigation has been done to evaluate the leakage performance of labyrinth seal for oil sealing on high-speed sealing test rig at different working and geometric parameters.Typical values of pressure ratio ranging from 1.0 to 2.0 were used and the rotating speed varied from 0 to 30,000 tpm.Dimensionless Taylor number was invited to response the effect of rotation.Oil was injected at the rate from 1.2 L/min to 2.8 L/min to check the sealing capacity.Leakage was measured at different seal configurations including sealing clearance,tooth tip thickness,pitch,teeth number,front inclined angle and oil-throwing angle.Different from gas sealing,the application of oil-throwing tooth in oil sealing attracted much interest as an obvious alternative to the conventional labyrinth seal.A blocking ring was captured during testing,which establishes understanding of underlying flow mechanisms in the clearance and plays an important role in oil sealing.There is a critical Taylor number at which the leakage coefficient drops drastically.After the critical Taylor number,a parabola rule appears.An optimal composition of tooth tip thickness,teeth number,oil-throwing angle and front inclined angle exists where the leakage performance behaves better.