Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliabilit...Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution.展开更多
Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dam...Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration.展开更多
In this paper, the aero-engine mainshaft roller bearing D1842926 under typical operating conditions is taken as a case study, a new integrated numerical algorithm of quasi-dynamics and thermal elastohydrodynamic lubri...In this paper, the aero-engine mainshaft roller bearing D1842926 under typical operating conditions is taken as a case study, a new integrated numerical algorithm of quasi-dynamics and thermal elastohydrodynamic lubrication(TEHL) is put forward, which can complete the bearing lubricated analysis from global dynamic performance to local TEHL state and break out of the traditional analysis way carried out independently in their own field.The 3-D film thickness distributions with different cases are given through integrated numerical algorithm, meanwhile the minimum film thickness of quasi-dynamic analysis, integrated numerical algorithm and testing are compared, which show that integrated numerical results have good agreements with the testing data, so the algorithm is demonstrated available and can judge the lubrication state more accurately.The parameter effects of operating and structure on pv value, cage sliding rate, TEHL film pressure, thickness and temperature are researched, which will provide an important theoretical basis for the structure design and optimization of aero-engine mainshaft roller bearing.展开更多
文摘Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution.
基金the National Key Basic Research Program of China(No.2015CB057400)the National Natural Science Foundation of China(Nos.11672201 and 11872045)the Major Special Basic Research Projects for Aeroengines and Gas Turbines(No.2017-IV-0008-0045)。
文摘Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration.
基金supported by the National Key Basic Research Program of China (No.2013CB632305)the National Natural Science Foundation of China (No.51373186)
文摘In this paper, the aero-engine mainshaft roller bearing D1842926 under typical operating conditions is taken as a case study, a new integrated numerical algorithm of quasi-dynamics and thermal elastohydrodynamic lubrication(TEHL) is put forward, which can complete the bearing lubricated analysis from global dynamic performance to local TEHL state and break out of the traditional analysis way carried out independently in their own field.The 3-D film thickness distributions with different cases are given through integrated numerical algorithm, meanwhile the minimum film thickness of quasi-dynamic analysis, integrated numerical algorithm and testing are compared, which show that integrated numerical results have good agreements with the testing data, so the algorithm is demonstrated available and can judge the lubrication state more accurately.The parameter effects of operating and structure on pv value, cage sliding rate, TEHL film pressure, thickness and temperature are researched, which will provide an important theoretical basis for the structure design and optimization of aero-engine mainshaft roller bearing.